SDS1000X-E Series Super Phosphor Oscilloscope

Key Features

100 MHz, 200 MHz bandwidth models

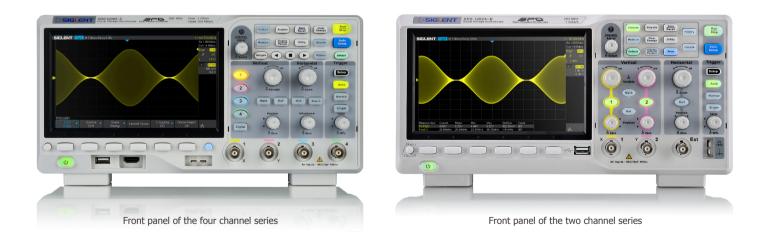
- Two channel series have one 1 GSa/s ADC, four channel series have two 1 GSa/s ADCs. When all channels are enabled, each channel has a maximum sample rate of 500 MSa/s. When a single channel per ADC is active, it has sample rate of 1 GSa/s
- The newest generation of SPO technology
 - Waveform capture rate up to 100,000 wfm/s (normal mode), and 400,000 wfm/s (sequence mode)
 - Supports 256-level intensity grading and color display modes Record length up to 14 Mpts
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern
- Serial bus triggering and decoding (Standard), supports protocols IIC, SPI, UART, RS232, CAN, LIN
- 🚣 Video trigger, supports HDTV
- Low background noisewith voltage scales from 500 μV/div to 10 V/div
- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
- Segmented acquisition (Sequence) mode, divides the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event.
- History waveform record (History) function, maximum recorded waveform length is 80,000 frames.
- Automatic measurement function for 38 parameters as well as Measurement Statistics, Zoom, Gating, Math, History and Reference functions
- 1 Mpts FFT
- Math and measurement functions use all sampled data points (up to 14 Mpts)
- Math functions (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- Preset key can be customized for user settings or factory "defaults"
- Security Erase mode
- High Speed hardware based Pass/ Fail function
- MSO, 16 digital channels (four channel series only, option)
- Bode plot (four channel series only)
- Search and navigate (four channel series only)
- USB AWG module (four channel series only, option)
- USB WIFI adapter (four channel series only, option)
- Heb Browser based control (four channel series only)
- Large 7 inch TFT -LCD display with 800 * 480 resolution
- Multiple interface types: USB Host, USB Device (USB -TMC), LAN Pass / Fail, Trigger Out
- Supports SCPI remote control commands
- Supports Multi-language display and embedded online help

SDS1104X-E SDS1204X-E SDS1202X-E

Product overview

SIGLENT's new SDS1000X-E Super Phosphor Oscilloscopes feature two channel and four channel models. The two channel model is available with a 200 MHz analog bandwidth, a single ADC with a 1 GSa/s maximum sample rate, and a single memory module with 14 Mpts of sample memory. The four channel scope is available in 100 and 200 MHz models and incorporates two 1 GSa/s ADCs and two 14 Mpts memory modules. When all channels are enabled, each channel has sample rate of 500 MSa/s and a standard record length of 7 Mpts. When only a single channel per ADC is active, the maximum sample rate is 1 GSa/s and the maximum record length is 14 Mpts. For ease -of -use, the most commonly used functions can be accessed with its user- friendly front panel design.

The SDS1000X-E series employs a new generation of SPO (Super -Phosphor Oscilloscope) technology that provides excellent signal fidelity and performance. The system noise is also lower than similar products in the industry. It comes with a minimum vertical input range of 500 uV/div, an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 400,000 frames/sec (sequence mode). The SDS1000X-E also employs a 256-level intensity grading display function and a color temperature display mode not found in other models in this class. SIGLENT's latest oscilloscope offering supports multiple powerful triggering modes including serial bus triggering. Serial bus decoding for IIC, SPI, UART, CAN, LIN bus types is included. The X-E models also include History waveform recording, and sequential triggering that enable extended waveform recording and analysis. Another powerful addition is the new 1 million point FFT math function that gives the SDS1000X-E very high frequency resolution when observing signal spectra. The new digital design also includes a hardware co-processor that delivers measurements quickly and accurately without slowing acquisition and front-panel response. The features and performance of SIGLENT's new SDS1000X-E cannot be matched anywhere else in this price class.

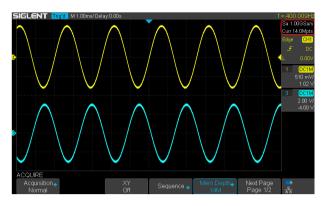

The four channel series includes even more functions, including: searching and navigating, on-screen Bode plot, 16 digital channels (Option), an external USB powered 25 MHz AWG module (Option), a USB WIFI adapter (Option), and an embedded application that allows remote control via web browser.

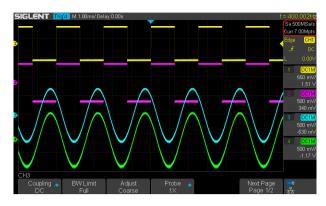
Models and key Specification

Model	SDS1104X-E	SDS1204X -E SDS1202X-E
Bandwidth	100 MHz	200 MHz
SamplingRate (Max.)	Two channel series have a single 1 GSa/s ADC, fou channels are enabled, each channel has a maximum pair is active, that channel has sample rate of 1 GSa/	sample rate of 500 MSa/s. When a single channel per
Channels	4 (four channel series) 2+EXT (two channel series)	
Memory Depth (Max.)	7 Mpts/CH (not interleave mode); 14 Mpts/CH (interleave mode)	
Waveform Capture Rate (Max.)	100,000 wfm/s (normal mode), 400,000 wfm/s (seque	ence mode)
Trigger Type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dro	opout, Pattern, Video
Serial Trigger and decoder (Standard)	IIC, SPI, UART/RS232, CAN, LIN	
16 Digital Channels (four channel series only, option)	Maximum waveform capture rate up to 1 GSa/s, Reco	rd length up to 14 Mpts/CH
USB AWG module (four channel series only, option)	One channel, 25 MHz, sample rate of 125 MHz, wave	length of 16 kpts
Bode plot (four channel series only)	Minimum start frequency of 10 Hz, minimum scan ba MHz (dependent on Oscilloscope and AWG bandwidth	
USB WIFI adapter (four channel series only, option)	802.11b/g/b, WPA-PSK, the adapter must be supplied	by Siglent to ensure working
I/O	USB Host, USB Device, LAN, Pass/Fail, Trigger Out, St	ous (Siglent MSO)
Probe (Std)	4 pcs passive probe PP510	4/2 pcs passive probe PP215
Display	7 inch TFT -LCD (800x480)	
Weight	Four channel series: Without package 2.6 Kg; With pa Two channel series: Without package 2.5 Kg; With pa	5 5

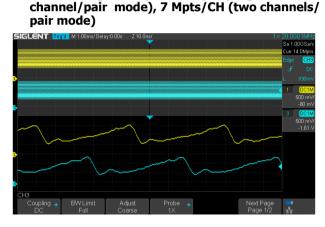
Function & Characteristics

7 inch TFT-LCD display and 10 one-button menus

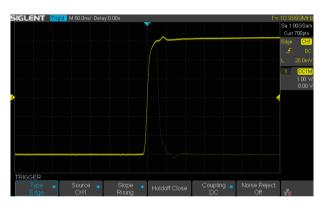


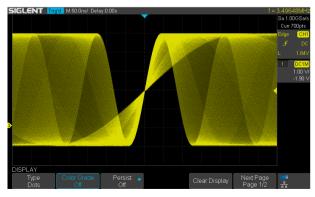

• 7 -inch TFT -LCD display with 800 * 480 resolution

• Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print


Function & Characteristics

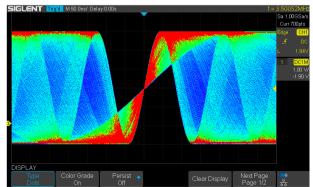
When all channels are enabled, each channel has a maximum sample rate of 500 MSa/s. When a single channel per pair is active, that channel has sample rate of 1 GSa/s


The four channel series has two 1 GSa/s ADC chips (channel 1 and 2 share one, channel 3 and 4 share another), so that each channel can achieve sample rates up to 500 MSa/and work on bandwidths of 200 MHz when all channels are enabled.

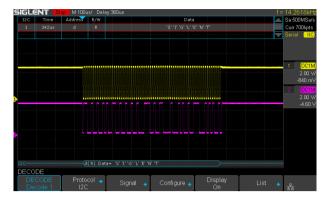

Record Length of Up to 14 Mpts (single

Using hardware-based Zoom technologies and max record length of up to 14 Mpts, users are able to oversample to capture for longer time periods at higher resolution and use the zoom feature to see more details within each signal.

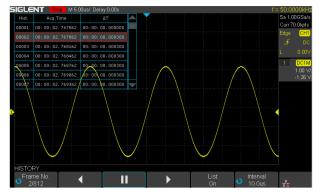
Waveform Capture Rate Up to 400,000 wfm/s



With a waveform capture rate of up to 400,000 wfm/s (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.


256 -Level Intensity Grading and Color Temperature Display

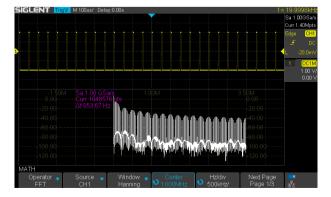
SPO display technology provides for fast refresh rates. The resulting intensity-graded trace is brighter for events that occur with more frequency and dims when the events occur with less frequency.


The color temperature display is similar to the intensity-graded trace function, but the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red colors represents the more frequent events, while blue is used to mark points that occur lest frequently.

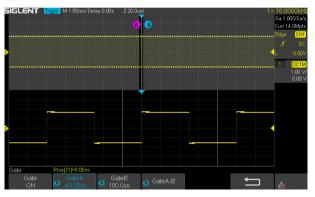
Serial Bus Decoding Function (Standard)

SDS1000X-E displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in a tabular format.

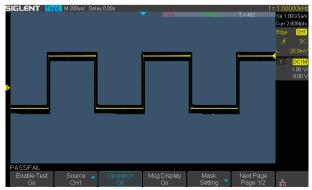
History Waveforms (History) Mode and Segmented Acquisition (Sequence)


Playback the latest triggered events using the history function. Segmented memory collection will store trigger events into multiple (Up to 80,000) memory segments, each segment will store triggered waveforms and timestamp each frame.

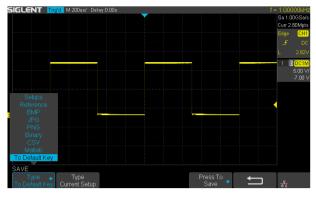
It a measurement to 14 M points


At any one timebase, SDS1000X-E can measure using all 14 M sample points. This ensures the accuracy of measurements while the math coprocessor decreases measurement time and increases ease-of-use.

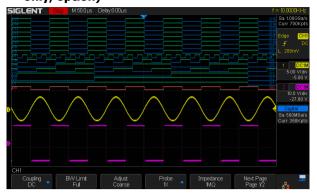
I M points FFT


The new math co-processor enables FFT analysis of incoming signals using up to 1 M samples per waveform. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs.

Gate and Zoom Measurement


Through Gate and Zoom measurement, the user can specify an arbitrary interval of waveform data analysis and statistics. This helps avoid measurement errors that can be caused by invalid or extraneous data, greatly enhancing the measurements' validity and flexibility.

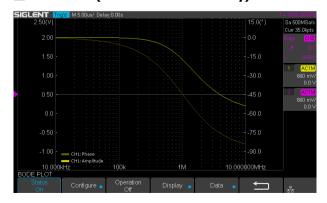
Hardware-Based High Speed Pass/ Fail function


The SDS1000X-E utilizes a hardware-based Pass/Fail function, performing up to 40,000 Pass / Fail decisions each second. Easily generate user defined test templates provide trace mask comparison making it suitable for long-term signal monitoring or automated production line testing.

4 Customizable Default Key

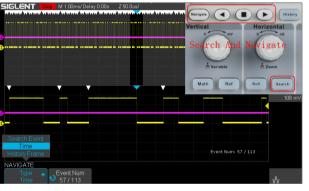
The current parameters of the oscilloscope can be preset to Default Key through the Save menu.

16 Digital Channels/MSO (four channel series only, option)



16 digital channels enables users to acquire and trigger on the waveforms then analyze the pattern, simultaneously with one instrument.

Search and Navigate (four channel series only)


The SDS1000X-E can search events specified by the user in a frame. It can also navigate by time (delay position) and historical frames.

Bode Plot (four channel series only)

SDS1000X-E can control the USB AWG module, control an independent SIGLENT SDG instrument, scan an object's amplitude and phase frequency response, and display the data as a Bode Plot. It can also show the result lists, and export the data to a USB disk.

USB WIFI Adapter (four channel series only, option)

WiFi control of instrumentation can provide a convenient and safe method of configuring and collecting data. This new feature works with a SIGLENT approved WiFi adapter to provide wireless control and communications with SIGLENT 4 channel scopes. The adapter must be supplied by Siglent to ensure working. USB 25 MHz AWG Module (four channel series only, option)

The four channel series supports a USB 25 MHz function/arbitrary waveform generator that is operated from the USB host connection. Functions include Sine, Square, Ramp, Pulse, Noise, DC and 45 built-in waveforms. The arbitrary waveforms can be accessed and edited by the SIGLENT EasyWave PC software.

Complete Connectivity

Back panel of the four channel series

SDS1000X -E supports USB Host, USB Device (USB -TMC), LAN(VXI -11), Pass/Fail and Trigger Out

Back panel of the two channel series

Web control (four channel series only)

Yession Update Screen Reflects Save Screen Datauit Auto Setup Run/Stop	gle TrgLe60% Control Panel SCPI Comman
GLENT TOTAL M 100au Delay 0.00%	8= 5 CODEAN Horizontal
	Carl 14 Gase H Scale: 1up + Delay 0 p +
	af DC L 0.00v Acquire
	1 Common Model Nermal + 302 Off + Mann Depth. 14M +
	004
	Trigger TrigTop: Edge • Source: CHS • TrigMode Auge • TrigLood 0.00 eV •
	Show. Roing + Holdet. Of +
1990-ER Tato - Source - Stope - Ministration Coupling - Netse Re	Display
Edge OHI Rising DC Of	
easurement difference on control on control on control on	Vertical
	Channels Channel 1 Channel 2 Channel 3 Channel 4 Swght: 00 01 06 07 05 07 06 07
ature 7/24: * * *	
7CE Y Y Y Y	
sut.	
	Coupling: DC + DC + DC +
	0//Link 0f + 10 + 0f +
	Probe: 1X * 1X * 1X *

With the new embedded web server, users can control the 4 channel scopes from a simple web page. This provides wonderful remote troubleshooting and monitoring capabilities.

Specifications

Acquire System	
Sampling Rate	1 GSa/s (single channel/pair), 500 MSa/s (two channels/pair)
Memory Depth	Max 14 Mpts/Ch (single channel/pair), 7 Mpts/Ch (two channels/pair)
Peak Detect	2 nsec (Four channel series)
	4 nsec (Two channel series)
Average	Averages:4, 16, 32, 64, 128, 256, 512, 1024
Eres	Enhance bits:0.5, 1.5, 2, 2.5, 3; Selectable
Waveform interpolation	Sin(x)/x, Linear

Input	
Channels	4 (Four channel series) 2+EXT (Two channel series)
Coupling	DC, AC, GND
Impedance	DC: $(1 M\Omega \pm 2\%) \parallel (15 pF \pm 2 pF)$ (Four channel series) DC: $(1 M\Omega \pm 2\%) \parallel (18 pF \pm 2 pF)$ (Two channel series)
Max.Input voltage	$1 \text{ M}\Omega \leq 400 \text{ Vpk(DC + Peak AC <=10 kHz)}$
CH to CH Isolation	DC-Max BW >40 dB
Probe attenuation	0.1X, 0.2X, 0.5X, 1X, 2X, 5X, 10X1000X, 2000X, 5000X, 10000X

Vertical System	
Bandwidth (-3 dB)	200 MHz (SDS1204X-E/SDS1202X-E) 100 MHz (SDS1104X-E)
Vertical Resolution	8-bit
Vertical Scale (Probe 1X)	500 µV/div - 10 V/div (1-2-5 sequence)
Offeet Dange (Drobe 1V)	500 µV- 150 mV: ± 2 V
Offset Range (Probe 1X)	152 mV- 1.5 V: ± 20 V
Bandwidth Limit	20 MHz ±40%
	DC- 10% (BW): ± 1 dB
Bandwidth Flatness	10%- 50% (BW): ± 2 dB
	50%- 100% (BW): + 2 dB/-3 dB
Low Frequency Response (AC -3 dB)	≤10 Hz (at input BNC)
	ST-DEV \leq 0.5 division (<1 mV/div)
Noise	ST-DEV ≤0.2 division (<2 mV/div)
	ST-DEV ≤ 0.1 division (≥ 2 mV/div)
SFDR including harmonics	≥35 dB
	≤±3.0%: 5 mV/div-10 V/div
DC Gain Accuracy	≤±4.0%: ≤2 mV/div
Official Accuracy	±(1%* Offset+1.5%*8*div+2 mV): ≥2 mV/div
Offset Accuracy	±(1%* Offset+1.5%*8*div+500 uV): ≤1 mv/div
Disatima	Typical 1.8 ns (SDS1204X-E/SDS1202X-E)
Risetime	Typical 3.5 ns (SDS1104X-E)
Overshoot (500 ps Pulse)	<10%

SDS1000X-E Series Digital Oscilloscope

Horizontal System	
Timebase Scale	1.0 ns/div-100 s/div
Channel Skew	<100 ps
Waveform Capture Rate	Up to 100,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Intensity grading	256 Levels
Display Format	Y -T, X -Y,Roll
Timebase Accuracy	±25 ppm
Roll Mode	50 ms/div-100 s/div (1-2-5 step)

Trigger System	
Trigger Mode	Auto, Normal, Single
Trigger Level	Internal: ±4.5 div from the center of the screen
	EXT: ±0.6 V (Two channel series)
	EXT/5: ±3 V (Two channel series)
Holdoff Range	80 ns- 1.5 s
Trigger Coupling	AC DC LFRJ HFRJ Noise RJ
	DC: Passes all components of the signal
Coupling Frequency Response	AC: Blocks DC components and attenuates signals below 8 Hz
couping requercy response	LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz
	HFRJ: Attenuates the high-frequency components above 1.2 MHz
	DC: Passes all components of the signal
Coupling Frequency Response	LFRJ: Blocks the DC component and attenuates the low-frequency components below 10 KHz
	HFRJ: Attenuates the high-frequency components above 500 KHz
components below 10 KHz	Internal: ±0.2 div
	EXT (Two channel series): ±0.4 div
	DC - Max BW 0.6 div
	EXT (Two channel series): 200 mVpp DC- 10 MHz
Trigger Sensitivity	300 mVpp 10 MHz - BW frequency
	EXT/5 (Two channel series): 1 Vpp DC – 10 MHz
	1.5 Vpp 10 MHz -BW frequency
Trigger Jitter	< 100 ps
Trigger Displacement	Pre-Trigger: 0 - 100% Memory
	Delay Trigger: 0 to 10,000 div
Edge Trigger	
Slope	Rising, Falling, Rising&Falling
Source	All channels/ EXT/ (EXT/5)/ AC Line (Two channel series) All channels/ AC Line (Four channel series)
Slope Trigger	
Slope	Rising, Falling
LimitRange	< , > , <> , ><
Source	All channels
TimeRange	2 ns- 4.2 s
Resolution	1 ns

Pulse Trigger	
Polarity	+wid , -wid
Limit Range	< , > , <> , ><
Source	All channels
Pulse Range	2 ns ~ 4.2 s
Resolution	1 ns
Video Trigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50, 1080i/60, Custom
Source	All channels
Sync	Any, Select
Trigger condition	Line, Field
Window Trigger	
Window Type	Absolute, Relative
Source	All channels
Interval Trigger	
Slope	Rising, Falling
Limit Range	< , > , <> , > <
Source	All channels
Time Range	2 ns ~ 4.2 s
Resolution	1 ns
Dropout Trigger	
Timeout Type	Edge, State
Source	All channels
Slope	Rising, Falling
Time Range	2 ns ~ 4.2 s
Resolution	1 ns
Runt Trigger	
Polarity	+wid , -wid
Limit Range	< , > , <> , ><
Source	All channels
Time Range	2 ns ~ 4.2 s
Resolution	1 ns
Pattern Trigger	
Pattern Setting	Invalid, Low, High
	AND, OR, NAND, NOR
Pattern Setting	
Pattern Setting Logic	AND, OR, NAND, NOR
Pattern Setting Logic Source	AND, OR, NAND, NOR All channels

Serial Trigger	
I2C Trigger	
Condition	Start, Stop, Restart, No Ack, EEPROM, 7 bits Address & Data, 10 bits Address & Data, Data Length
Source (SDA/SCL)	All channels
Data format	Hex
Limit Range	EEPROM: =, >, <
Data Length	EEPROM: 1 byte Addr & Data: 1 ~ 2 byte Data Length: 1 ~ 12 byte
R/W bit	Addr & Data: Read, Write, Do not care
SPI Trigger	
Condition	Data
Source (CS/CL/Data)	All channels
Data format	Binary
Data Length	4 ~ 96 bit
Bit Value	0, 1, X
Bit Order	LSB, MSB
UART/ RS232 Trigger	
Condition	Start, Stop, Data, Parity Error
Source (RX/TX)	All channels
Data format	Hex
Limit Range	=, >, <
Data Length	1 byte
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	High, Low
Baud (Selectable)	600/1200/2400/4800/960019200/38400/57600/115200 bit/s
(Custom)	300 bit/s ~ 334000 bit/s
CAN Trigger	
Condition	All, Remote, ID, ID + Data, Error
Source	All channels
ID	STD (11 bit), EXT (29 bit)
Data Format	Hex
Data Length	1~2 byte
Baud Rate (Selectable)	5 k/10 k/20 k/50 k/100 k/125 k/250 k/500 k/800 k/1 M bit/s
Baud Rate (Custom)	5 kbit/s~1 Mbit/s
LIN Trigger	
Condition	Break, Frame ID, ID+Data, Error
Source	All channels
ID	1 byte
Data Format	Hex
Data Length	1 ~ 2 byte
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200 bit/s
Baud Rate (Custom)	300 bit/s ~ 20 kbit/s

Serial Decoder	
I2C Decoder	
Signal	SCL, SDA
Address	7 bits, 10 bits
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines
SPI Decoder	
Signal	SCL,MISO, MOSI, CS *NOTE 2 channel scopes can only use 2 signal identifiers
Edge Select	Rising, Falling
Idle Level	Low, High
Bit Order	MSB, LSB
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines
UART/ RS232 Decoder	
Signal	RX, TX
Data Width	5 bit, 6 bit, 7 bit, 8 bit
Parity Check	None, Odd, Even
Stop Bit	1 bit, 1.5 bit, 2 bit
Idle Level	Low, High
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines
CAN Decoder	
Signal	CAN_H, CAN_L
Source	CAN_H, CAN_L, CAN_H-CAN_L
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines
LIN Decoder	
LIN Specification Package Revision	Ver1.3, Ver2.0
Threshold	-4.5 ~ 4.5 div
List	1 ~ 7 lines

Socie All channels, All channels in Zoom, Math, All References, Hatory Number of Heasurement Dipplys 5 measurements at the same time Heasurement Parameter, Sarte region, Cate region Second Sec	Measurement		
Measurement Range Screen region, Gate region Heasurement Parameter 13 Type: Max Highest value in input waveform Min Lowest value in input waveform Min Difference between maximum and minimum data values Ampl Difference between maximum and minimum data values Max Average of all data values in the bimodal ignal, or between max and mini in an unimodal signal Max Average of all data values in the first cycle Venter Cancel Average of all data values in the first cycle Venter Standard deviation of all data values in the first cycle Cancel Venter Standard deviation of all data values in the first cycle Cancel Venter Root mean square of all data values in the first cycle Cancel Venter Root mean square of all data values in the first cycle Composition af a falling dege; (max-top)/Amplitude FPRE Overshoot after a falling dege; (max-top)/Amplitude FPRE Overshoot after a falling dege; (max-top)/Amplitude Lowellow Wethon measured all SNe keed and posible keed pace FPRE Overshoot after a falling dege; (max-top)/Amplitude Lowellow Wethon meascured all SNe ke	Source	All channels, All channels in Zoom, Math, All References, History	
Nearment Planmeters (38 Types) Injust waveform Max Highest value in input waveform Min Lowest value in input waveform Min Difference between naximum and minimum data values Ampl Difference between naximum and minimum data values Ampl Difference between naximum and minimum data values Top Value of most probable lower state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Man Average of data values Crean Average of data values Rot Standard deviation of all data values Not Standard deviation of all data values Crean Average of all data values Rot Root mean square of all data values Overshoot before a falling edge; (max-min)/Amplitude Root Rov Overshoot before a falling edge; (max-min)/Amplitude Rov Overshoot before a falling edge; (max-min)/Amplitude Rov Value of the trigger point Not The fort here ery cycle in waveform at the 50% level, and positive slope Prea Freaq for every cycle in waveform at the 50% level, and positive slope <tr< td=""><td>Number of Measurements</td><td colspan="2">Display 5 measurements at the same time</td></tr<>	Number of Measurements	Display 5 measurements at the same time	
Instantian of the second sec	Measurement Range	Screen region, Gate region	
Final Lowest value in input waveform PicPic Difference between maximum and minimum data values Anpl Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Top Value of most probable higher state in a bimodal waveform Mean Average of all data values Cream Average of all data values in the first cycle Vertical (Votage) Stade deviation of all data values in the first cycle Votage Stade deviation of all data values in the first cycle Votage Root mean square of al data values in the first cycle Votage Root mean square of al data values in the first cycle Votage Root mean square of al data values in the first cycle Votage Root mean square of al data values in the first cycle Votage Root mean square of al data values PicPu Oveshoot before a lating edge; (max-top)/Anpitude Root Oveshoot before a raing edge; (max-top)/Anpitude Root Prodot freewy cycle in waveform at the 50% level, and positive slope PicPu Votation of raing edge to the last failing edge, totas-top)/Anpitude Root Root or of failing edge fonon 10-90% PicPu	Measurement Paramete	rs (38 Types)	
PicPic Difference between maximum and minimum data values Anpl Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Top Value of most probable logies state in a bimodal waveform Mean Average of data values Crean Average of data values Crean Average of data values Grean Standard deviation of all data values Crean Standard deviation of all data values Crean Standard deviation of all data values Crean Root mean square of all data values Crean Root mean square of all data values Crean Root mean square of all data values PicPic Overshoat after a fising edge; (max-top)/Anplitude PicPic Overshoat after a fising edge; (max-top)/Anplitude Root resources (resource)/Anplitude Root resources (resource)/Anplitude Root resources (resource)/Anplitude Root Resource allong edge (max-top)/Anplitude Root Resource allong edge (max-top)/Anplitude Root resources (resource)/Anplitude Root Resource allong edge f		Max	Highest value in input waveform
Ample Difference between top and base in a bimodal signal, or between max and min in an unimodal signal Top Value of most probable higher state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Mean Average of ald avalues in the first cycle Creation Stadered deviation of all data values Creation Root mean square of all data values PRE Overshoot before a falling edge; (max-top)/Amplitude FRE Overshoot before a falling edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Value There on the rising edge (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Value There on there on rising edge; forse-on poly/Amplitude Value Wath measured at 50% level and positive slope Preace Preacercy for every cycle in waveform at the 50% level, and positive slope Value Math		Min	Lowest value in input waveform
Portical (voltage) Top Value of most probable lower state in a bimodal waveform Base Value of most probable lower state in a bimodal waveform Mean Average of all data values Ornean Average of data values in the first cycle Vertical (voltage) Standard deviation of all data values Vertical (voltage) Standard deviation of all data values Vertical (voltage) Standard deviation of all data values Vertical (voltage) Root mean square of all data values Vertical (voltage) Root mean square of all data values Vertical (voltage) Root mean square of all data values Vertical (voltage) Root mean square of all data values Voltage Root mean square of all data values Port Overshoot after a filing edge; (max-top)/Amplitude ROV Overshoot before a filing edge; (max-top)/Amplitude RPRE Overshoot before an soling edge; form 10-90% Rise Time Duration of filing edge from 90-10% Rise Time Duration of filing edge from 90-10% Rise Time Duration of rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing Houtcon <td></td> <td>Pk-Pk</td> <td>Difference between maximum and minimum data values</td>		Pk-Pk	Difference between maximum and minimum data values
Base Value of mot probable lower state in a bimodal waveform Mean Average of all data values Cmean Average of all data values Cmean Average of all data values Cmean Standard deviation of all data values Stadev Standard deviation of all data values Cmean Standard deviation of all data values Cmean Standard deviation of all data values Cmean Root mean square of all data values Cmean Root mean square of all data values FRPE Overshoot after a falling edge; (max-top)/Amplitude FRPE Overshoot bafter a ring edge; (max-top)/Amplitude RPRE Period for every cycle in waveform at the 50% level and positive slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Widt Width measured at 50% level and negative slope		Ampl	Difference between top and base in a bimodal signal, or between max and min in an unimodal signal
Mean Average of all data values Cmean Average of data values in the first cycle Verbical (Voltage) Stokev Standard deviation of all data values Cstd Standard deviation of all data values Interfixed cycle Cstd Standard deviation of all data values Interfixed cycle VENS Root mean square of all data values Interfixed cycle Creat Root mean square of all data values Interfixed cycle FIPE Overshoot after a failing edge; (max-top)/Amplitude Root ROV Overshoot after a rising edge; (max-top)/Amplitude Root RAPE Overshoot before a failing edge; (max-top)/Amplitude Receree ROV Overshoot before a failing edge; (max-top)/Amplitude Receree RAPE Overshoot before a failing edge; (max-top)/Amplitude Receree RAPE Overshoot before a failing edge; (max-top)/Amplitude Receree RAPE Prequency for every cycle in waveform at the 50% level, and positive slope Receree Fireq Frequency for every cycle in waveform at the 50% level, and positive slope Receree Vivith Watht measured at 50% level and negative		Тор	Value of most probable higher state in a bimodal waveform
Image: Provide a state of data values in the first cycle Image: Provide a state of data values in the first cycle Vertical (Voltage) Stdev Standard deviation of all data values in the first cycle Vertical (Voltage) Card Standard deviation of all data values in the first cycle VRMS Root mean square of all data values in the first cycle Card Ores in the state of all data values in the first cycle Card State of all data values in the first cycle FIPE Overshoot before a falling edge; (task-top)/Amplitude FIPE Overshoot before a rising edge; (task-top)/Amplitude RDV Overshoot before a rising edge; (task-top)/Amplitude FIPE Overshoot before a rising edge; (task-top)/Amplitude RDV Overshoot before a rising edge; tomax-top)/Amplitude Fired Frequency for every cycle in waveform at the 50% level, and positive slope Fired Frequency for every cycle in waveform at the 50% level, and positive slope Fired Fired Overshoot failing edge for 00-10% Vivid Width measured at 50% level and positive slope Fired Overshoot failing edge for 00-10% Fired Overshoot failing edge for 00-10% Fired Ratio of positive width to period Fired Overshoot failing edge for 00-10% Fired Overshoot failing edge for 00-10%		Base	Value of most probable lower state in a bimodal waveform
Vertical (Voitage) Stadew Standard deviation of all data values In the first cycle Cistal Standard deviation of all data values In the first cycle In the first cycle VRMS Root mean square of all data values In the first cycle In the first cycle FOV Overshoot after a failing edge; (base-min/)Amplitude In the first cycle In the first cycle RV Overshoot after a rising edge; (max-top)/Amplitude In the first cycle In the first cycle RPRE Overshoot after a rising edge; (max-top)/Amplitude In the first cycle In the first cycle RPRE Overshoot after a rising edge; (max-top)/Amplitude In the first cycle In the first cycle RPRE Overshoot after a rising edge; (max-top)/Amplitude In the first cycle In the first cycle RPRE Overshoot after a rising edge; fom solower at the 50% level, and positive slope In the first cycle In the first cycle Vidit Widit measured at 50% level and positive slope In the first rising edge from 50-00% In the first rising edge from 50-00% Photo Restron of rising edge from 50-00% Trosting edge at the 50% crossing. In the first rising edge from 50-00% In the f		Mean	Average of all data values
Edd Standard deviation of all data values in the first cycle VRMS Root mean square of all data values Cms Root mean square of all data values in the first cycle FOV Overshoot after a falling edge; (base-min)/Amplitude FOVE Overshoot after a rising edge; (max-top)/Amplitude ROR Overshoot after a rising edge; (max-top)/Amplitude ROR Overshoot after a rising edge; (max-top)/Amplitude LevelBX the voltage value of the trigger point Vershoot before a rising edge; (base-min)/Amplitude EvendBX Frequency for every cycle in waveform at the 50% level, and positive slope Frequency for every cycle in waveform at the 50% level, and positive slope Frequency for every cycle in waveform at the 50% level, and positive slope Frequency for every cycle in waveform at the 50% level, and positive slope Horizon RiseTime Duration of rising edge form 10-90% RiseTime Duration of rising edge form 10-90% Fall Time Duration of rising edge to the last ralling edge, or the first falling edge at the 50% crossing Horizon RiseTime from the trigger to the first ralling edge, or the first falling edge at the 50% crossing Horizon Time from the trigger to the first rising edge at the 50% crossing		Cmean	Average of data values in the first cycle
VIMS Root mean square of all data values Cms Root mean square of all data values in the first cycle FV Overshoot after a falling edge; (base-min)/Amplitude FVE Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (base-min)/Amplitude ROV Overshoot before a rising edge; (base-min)/Amplitude RPE Overshoot before a rising edge; (base-min)/Amplitude Level@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope FWIM Width measured at 50% level and negative slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Buidt of positive width to period -Dut Ratio of positive width to period -Dut Ratio of negative width to period -Dut Ratio	Vertical (Voltage)	Stdev	Standard deviation of all data values
Cms Root mean square of all data values in the first cycle FV Overshoot after a falling edge; (base-min)/Amplitude FPRE Overshoot after a rising edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPE Overshoot after a rising edge; (max-top)/Amplitude Level@X the voltage value of the trigger point Level@X Teroup cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Remote of rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing. +Dut Ratio of negative width to period -Dut Ratio of negative width to period Freq Time from the trigger to each rising edge at the 50% crossing. Wither Statistics is Off, it shows the turne from the trigger to the last rising edge at the 50% crossing.		Cstd	Standard deviation of all data values in the first cycle
FOV Overshoot after a failing edge; (base-min)/Amplitude FPRE Overshoot before a failing edge; (max-top)/Amplitude ROV Overshoot before a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (base-min)/Amplitude Level@X the voltage value of the trigger point Level@X Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope Hvid Width measured at 50% level and positive slope Hvid Width measured at 50% level and positive slope Freq Duration of rising edge from 10-90% Fail Time Duration of rising edge from 90-10% Fail Rise Time Potu Ratio of positive width to period Fore Ratio of negative width to period Potu Ratio of negative width to period Polu Ratio of negative width corrent, fern flying edge at the 50% crossing. Whith Statitiscis of If, it shows the time from the trirgger to		VRMS	Root mean square of all data values
FPRE Overshoot before a falling edge; (max-top)/Amplitude ROV Overshoot after a rising edge; (max-top)/Amplitude RPRE Overshoot before a rising edge; (max-top)/Amplitude Level@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope Horizontal (Time) Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of negative width to period Courcossing +Dut Ratio of negative width to period Courcossing -Time from the trigger to end rising edge at the 50% crossing. Time from the trigger to end rising edge at the 50% crossing. When Statistics is Of, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to edges of the stro shaneles Fref		Crms	Root mean square of all data values in the first cycle
ROV Overshoot after a rising edge; (max-top)/Amplitude RRE Overshoot before a rising edge; (max-top)/Amplitude Level@X the voltage value of the trigger point Level@X the voltage value of the trigger point Freq Period for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Width measured at 50% level and negative slope +Wid Duration of rising edge from 90-10% Fall Time Duration of falling edge from 90-10% +Dut Ratio of positive width to period +Dut Ratio of negative width to period -Dut Ratio of negative width to period -Dut Ratio of fit, shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing. When Statistics is On, it shows the time from the trigger to heart fishing edge of channel B ERF Time from the first rising edge of channel A to the first rising edge of channel B FRR <td< td=""><td></td><td>FOV</td><td>Overshoot after a falling edge; (base-min)/Amplitude</td></td<>		FOV	Overshoot after a falling edge; (base-min)/Amplitude
RPRE Overshoot before a rising edge; (base-min)/Amplitude Leve@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Duration of rising edge from 90-10% Fall Time Duration of falling edge from 90-10% -Dut Ratio of negative width to period -When Statistics is Off, it shows the time from the trigger to ach hising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to ach negative sing edge at the 50% crossing.		FPRE	Overshoot before a falling edge; (max-top)/Amplitude
Level@X the voltage value of the trigger point Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Widt measured at 50% level and negative slope -Wid Widt measured at 50% level and negative slope -Wid Nume form the first rising edge to the last falling edge to the last rising edge at the 50% crossing +Dut Ratio of negative width to period -Dut Ratio of negative width to period ime@Level Time from the trigger to ach rising edge at the 50% crossing. When Statistics is Ofi, it shows the time from the trigger to the last rising edge at the 50% crossing. Wh		ROV	Overshoot after a rising edge; (max-top)/Amplitude
Period Period for every cycle in waveform at the 50% level, and positive slope Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope Fall Time Duration of rising edge from 90-10% Fall Time Duration of faling edge from 90-10% Potta Ratio of positive width to period -Dut Ratio of negative width to period -Dut		RPRE	Overshoot before a rising edge; (base-min)/Amplitude
Freq Frequency for every cycle in waveform at the 50% level, and positive slope +Wid Width measured at 50% level and positive slope +Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope -Wid Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Fall Time Duration of falling edge from 90-10% +Dut Ratio of positive width to period -Dut Ratio of negative width to period <td></td> <td>Level@X</td> <td>the voltage value of the trigger point</td>		Level@X	the voltage value of the trigger point
+Wid Width measured at 50% level and positive slope -Wid Width measured at 50% level and negative slope -Wid Width measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Poil Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period -Dut Time from the trigger to each rising edge at the 50% crossing. me@Leve Time from the trigger to each rising edge at the 50% crossing. when Statistics is Of, it shows the time from the trigger to the last rising edge at the 50% crossing. meine@Leve Time from the trigger to each rising edge of the word hander between from the trigger to the last rising edge at the 50% crossing. when Statistics is Of, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge of channel A to the first falling edge of channel B PRAPE Fire FRA Time from the first rising edge of channel A to the first falling edge of channel B PRAPE Time from the first rising edge of channel A to the last rising edge of channel B F		Period	Period for every cycle in waveform at the 50% level, and positive slope
Nid Widt measured at 50% level and negative slope Rise Time Duration of rising edge from 10-90% Fall Time Duration of falling edge from 90-10% Horizontal (Time) Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing +Dut Ratio of positive width to period Time from the trigger to the first transition at the 50% crossing. -Dut Ratio of negative width to period Time from the trigger to each rising edge at the 50% crossing. -Play Time from the trigger to each rising edge at the 50% crossing. When Statistics is Of, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Of, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Of, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Of, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Of, it shows the time from the trigger to the last rising edge of channel S0% crossing. Fire Calculate the phase difference between two edges Fire Time from the first rising edge of channel A to the first falling edge of channel B Fire Time from the first falling edge of channel A to the last ri		Freq	Frequency for every cycle in waveform at the 50% level, and positive slope
Rise Time Duration of rising edge from 10-90% Fall Time Duration of faling edge from 90-10% Bivid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the Social cossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing. Time@Level Time from the trigger to each rising edge at the 50% crossing. When Statistics is Of, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to the last rising edge at the 50% crossing. Plase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A to the first falling edge of channel B FRR Time from the first falling edge of channel A to the last rising edge of channel B LIRA Time from the first rising edge of channel A to the last rising edge of channel B		+Wid	Width measured at 50% level and positive slope
Horizontal (Time)Fall TimeDuration of falling edge from 90-10%Horizontal (Time)Fall TimeTime from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the SocietyHorizontal (Time)BwidTime from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the SocietyHorizontal (Time)Ratio of negative width to periodHoutRatio of negative width to periodDelayTime from the trigger to the first transition at the 50% crossing.Time@LewelTime from the trigger to each rising edge at the 50% crossing.When Statistics is On, it shows the time from the trigger to the last rising edge at the 50% crossing.When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing.PhaseCalculate the phase difference between two edgesFRRTime from the first rising edge of channel A to the first falling edge of channel BFRFTime from the first falling edge of channel A to the first rising edge of channel BLRRTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last rising edge of cha		-Wid	Width measured at 50% level and negative slope
Horizontal (Time) Bwid Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the Social cosing Horizontal (Time) Bwid Ratio of positive width to period +Dut Ratio of negative width to period Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. Imme@Level Phase Calculate the phase difference between two edges FRR Time from the first rising edge of channel A to the first falling edge of channel B FFR Time from the first falling edge of channel A to the last rising edge of channel B FFR Time from the first rising edge of channel A to the last falling edge of channel B FFR Time from the first rising edge of channel A to the last falling edge of channel B FFR Time from the first rising edge of channel A to the last rising edge of channel B FFR Time from the first rising edge of channel A to the last falling edge of channel B FFR Time from the first rising edge of channel A to the last rising edge of channel B FFR Time from the first rising edge of channel A to the last rising edge of channel B FFR Time from		Rise Time	Duration of rising edge from 10-90%
Heat Finance crossing +Dut Ratio of positive width to period -Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing. Delay Time from the trigger to each rising edge at the 50% crossing. Time@Level Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to the first rising edge at the 50% crossing in multiple frames (number = Count). Phase Calculate the phase difference between two edges FRR Time from the first rising edge of the two channels FRF Time from the first rising edge of channel A to the first falling edge of channel B FFF Time from the first rising edge of channel A to the last rising edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of c		Fall Time	Duration of falling edge from 90-10%
-Dut Ratio of negative width to period Delay Time from the trigger to the first transition at the 50% crossing. Time@Level Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the turner, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing. Phase Calculate the phase difference between two edges FRR Time from the first rising edge of the two channels FRF Time from the first rising edge of channel A to the first falling edge of channel B FFF Time from the first falling edge of channel A to the first falling edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the last rising edge of channel B IRF Time from the first rising edge of channel A to the	Horizontal (Time)	Bwid	
Delay Time from the trigger to the first transition at the 50% crossing. Time@Level Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the turnent, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count). Phase Calculate the phase difference between two edges FRR Time from the first rising edge of the two channels FRF Time from the first rising edge of channel A to the first falling edge of channel B FFR Time from the first falling edge of channel A to the first falling edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B IRR Time from the first rising edge of channel A to the last rising edge of channel B		+Dut	Ratio of positive width to period
Image and the statistic is off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is Off, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to the sing edge at the 50% crossing in multiple frames (number = Count).PhaseAcluate the phase difference between two edgesFRRTime from the first rising edges of the two channelsFRFTime from the first rising edge of channel A to the first falling edge of channel BFRFTime from the first falling edge of channel A to the first falling edge of channel BFRFTime from the first falling edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first rising edge of channel A to the last rising edge of channel BInfe from the first falling edge of channel A to the last rising edge of channel BInfe from the first falling edge of channel A to the last rising edge of channel BInfe from the first fall		-Dut	Ratio of negative width to period
Time@Level When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to the rising edge at the 50% crossing in multiple frames (number = Count). Phase Calculate the phase difference between two edges FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A to the first falling edge of channel B FRR Time from the first falling edge of channel A to the first rising edge of channel B FRF Time from the first rising edge of channel A to the first falling edge of channel B FRF Time from the first rising edge of channel A to the first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LRF Time from the first falling edge of channel A to the last rising edge of channel B LRF Time from the first falling edge of channel A to the last rising edge of cha		Delay	Time from the trigger to the first transition at the 50% crossing
FRR Time between the first rising edges of the two channels FRF Time from the first rising edge of channel A to the first falling edge of channel B FRF Time from the first falling edge of channel A to the first falling edge of channel B FFF Time from the first falling edge of channel A to the first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRR Time from the first falling edge of channel A to the last rising edge of channel B		Time@Level	When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each
PRF Time from the first rising edge of channel A to the first falling edge of channel B FRR Time from the first falling edge of channel A to the first rising edge of channel B FFR Time from the first falling edge of channel A to the first rising edge of channel B FFF Time from the first rising edge of channel A to the first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LRF Time from the first falling edge of channel A to the last rising edge of channel B LRF Time from the first falling edge of channel A to the last rising edge of channel B LRR Time from the first falling edge of channel A to the last rising edge of channel B		Phase	Calculate the phase difference between two edges
Pelay FFR Time from the first falling edge of channel A to the first rising edge of channel B FFF Time from the first falling edge of channel A to the first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LRF Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first falling edge of channel A to the last rising edge of channel B		FRR	Time between the first rising edges of the two channels
Delay FFF Time from the first falling edge of channel A to the first falling edge of channel B LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LFR Time from the first falling edge of channel A to the last rising edge of channel B LFR Time from the first falling edge of channel A to the last rising edge of channel B		FRF	Time from the first rising edge of channel A to the first falling edge of channel B
Delay LRR Time from the first rising edge of channel A to the last rising edge of channel B LRF Time from the first rising edge of channel A to the last falling edge of channel B LFR Time from the first falling edge of channel A to the last rising edge of channel B LFR Time from the first falling edge of channel A to the last rising edge of channel B		FFR	Time from the first falling edge of channel A to the first rising edge of channel B
LRRTime from the first rising edge of channel A to the last rising edge of channel BLRFTime from the first rising edge of channel A to the last falling edge of channel BLFRTime from the first falling edge of channel A to the last rising edge of channel B		FFF	Time from the first falling edge of channel A to the first falling edge of channel B
LFR Time from the first falling edge of channel A to the last rising edge of channel B	Delay	LRR	Time from the first rising edge of channel A to the last rising edge of channel B
		LRF	Time from the first rising edge of channel A to the last falling edge of channel B
LFF Time from the first falling edge of channel A to the last falling edge of channel B		LFR	Time from the first falling edge of channel A to the last rising edge of channel B
		LFF	Time from the first falling edge of channel A to the last falling edge of channel B
Skew Time of source A edge minus time of nearest source B edge		Skew	Time of source A edge minus time of nearest source B edge

Measurement	
Cursors	Manual : Time X1, X2, (X1-X2), (1/ΔT) Voltage Y1, Y2, (Y1-Y2) Track: Time X1, X2, (X1-X2)
Statistics	Current, Mean, Min, Max, Stdev, Count
Counter	Hardware 6 bit counter (channels are selectable)

Math Function			
Operation	+ , - , * , / , FFT , d/dt , ∫dt , √		
FFT window	Rectangular, Blackman, Hanning, Hamming, Flattop		
FFT display	Full Screen, Split, Exclusive		
Number of Decoders	2		
USB AWG Module (four chan			
Channel	1		
Max. Output Frequency	25 MHz		
Sampling Rate	125 MSa/s		
Frequency Resolution	1 µНz		
Frequency Accuracy	±50 ppm		
Vertical Resolution	14-bits		
AmplitudeRange	-1.5 ~ +1.5 V (50Ω)		
	-3 ~ +3 V (High-Z)		
Waveform Type	Sine, Square, Ramp, pulse, Noise, DC and 45 built-in waveforms		
Output impedance	50 Ω±2%		
Protection	Over-Voltage Protection, Current-Limiting Protection		
Sine			
Frequency	1 μHz ~ 25 MHz		
Offset Accuracy (10 kHz)	±(1%*Offset Setting Value +1 mVpp)		
Amplitude flatness (10 kHz, 5 Vpp)	±0.3 dB		
	DC ~ 1 MHz -60 dBc		
SFDR	1 MHz ~ 5 MHz -55 dBc		
	5 MHz ~ 25 MHz -50 dBc		
HD	DC ~ 5 MHz -50 dBc		
	5 MHz ~ 25 MHz -45 dBc		
Square/Pulse			
Frequency	1 μHz ~ 10 MHz		
Duty Cycle	1% ~ 99%		
Rise/Fall time	< 24 ns (10% ~ 90%)		
Overshoot (1 kHz,1 Vpp, Typical)	< 3% (typical 1 kHz, 1 Vpp)		
Pulse Width	> 50 ns		
Jitter	< 500 ps + 10 ppm		
Ramp			
Frequency	1 μHz ~ 300 kHz		
Linearity (Typical)	< 0.1% of Pk-Pk (Typical, 1 kHz, 1 Vpp, 100% Symmetry)		
Symmetry	0% ~ 100% (Adjustable)		

SDS1000X-E Series Digital Oscilloscope

DC		
	±1.5 V (50 Ω)	
Offset range	±3 V (High-Z)	
Accuracy	±(offset *1%+3 mV)	
Noise		
Bandwidth	>25 MHz (-3 dB)	
Arbitrary Wave		
Frequency	1 μHz ~ 5 MHz	
Wave Length	16 kpts	
Sampling Rate	125 MSa/s	
Lead in	EasyWave and U-Disk	
Digital Channels (four channels	el series only, option)	
No. of Channels	16	
Max. Sampling Rate	1 GSa/s	
Memory Depth	14 Mpts/CH	
Min. Detectable Pulse Width	4 ns	
Level Group	D0~D7, D8~D15	
Level Range	-3 V ~ 3 V	
Logic Type	TTL, CMOS, LVCMOS3.3, LVCMOS2.5, custom	
Skew[2]	D0~D15: ± 1 sampling interval Digital to Analog: $\pm (1 \text{ sampling interval } +1 \text{ ns})$	
I/0		
Standard	USB Host, USB Device, LAN, Pass/Fail, Trigger Out	
Pass/Fail	3.3 V TTL Output	
Display (Screen)		
Display Type	7-inch TFT LCD	
Display Resolution	800×480	
Display Color	24 bit	
Contrast (Typical)	500:1	
Backlight	300 nit	
Range	8 x 14 divisions	
Display (Waveform)		
Display Mode	Dot, Vector	
Persist Time	Off, 1 Sec, 5 Sec, 10 Sec, 30 Sec, Infinite	
Color Display	Normal, Color	
Screen Saver	1 min, 5 min, 10 min, 30 min, 1 hour, Off	
Language	Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese	

Environments		
Temperature	Operating: 10° C ~ +40°C	
	Non-operating: -20° C ~ $+60^{\circ}$ C	
Humidity	Operating: 85% RH, 40 $^\circ\!\mathbb{C}$, 24 hours	
	Non-operating: 85% RH, 65 $^\circ\!\!\mathbb{C}$, 24 hours	
Height	Operating: ≤3000 m	
	Non-operating: ≤15,266 m	
Electromagnetic Compatibility	2004/108/EC)	
	Execution Standard EN 61326-1:2006	
	EN 61000-3-2:2006 + A2:2009, EN 61000-3-3:2008	
Safety	2006/95/EC	
Execution Standard EN 61010-1:2010/ EN 61010-2-030:2010		

Power Supply		
Input Voltage	100 ~ 240 VAC, CAT II, Auto selection	
Frequency	50/60/400 Hz	
Power	25 W Max	
Mechanical (Four channel series)		
	Length: 312 mm	
Dimensions	Width: 132.6 mm	
	Height: 151 mm	
Weight	N.W: 2.6 kg; G.W: 3.8 kg	

Mechanical (Two channel series)		
Dimensions	Length: 312 mm	
	Width: 134 mm	
	Height: 150 mm	
Weight	N.W: 2.5 Kg; G.W: 3.5 Kg	

Probes and Accessories

Probe	Picture	Model	Description
Passive	PB470		Bandwidth: 70 MHz, 1X/10X, 1M/10 Mohm, 300 V/600 V
	PP510		Bandwidth: 100 MHz, 1X/10X, 1M/10 Mohm,300 V/600 V
	PP215	8888	Bandwidth: 200 MHz, 1X/10X, 1M/10 Mohm, 300 V/600 V
Current Probe	CP4020		Bandwidth: 100 KHz, Max. continuous current: 20 Arms, Peak current: 60 A Switch Ratio: 50 mV/A, 5 mV/A, Accuracy: 50 mV/A (0.4 A-10 Apk) \pm 2%, 5 mV/A (1 A-60 Apk) \pm 2%, 9 V battery source
	CP4050		Bandwidth: 1 MHz, Max. continuous current: 50 Arms, Peak current: 140 A Switch Ratio: 500 mV/A, 50 mV/A Accuracy: 500 mV/A (20 mA-14 ApK) \pm 3% \pm 20 mA , 50 mV/A (200 mA- 100 ApK) \pm 4% \pm 200 mA, 50 mV/A (100 A-140 ApK) \pm 15% max, 9V battery source
	CP4070		Bandwidth: 150 KHz, Max. continuous current: 70 Arms, Peak current: 200 A Switch Ratio: 50 mV/A, 5 mV/A, Accuracy: 50 mV/A (0.4 A-10 ApK) \pm 2%, 5 mV/A (1 A-200 ApK) \pm 2%, 9V battery source
	CP4070A		Bandwidth: 300 KHz, Max. continuous current: 70 Arms, Peak current: 200 A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A (50 m A-10 ApK) \pm 3% \pm 50 mA , 10 mV/A (500 mA-40 ApK) \pm 4% \pm 50 mA, 10 mV/A (40 A-200 ApK) \pm 15% max, 9 V battery source
	CP5030		Bandwidth: 50 MHz, Max. continuous current: 30 Arms, Peak current: 50 A Switch Ratio: 100 mV/A, 1 V/A, Accuracy: 1 V/A (\pm 1% \pm 1 mA), 100 mV/A (\pm 1% \pm 10 mA), DC 12 V/ 1.2 A power adapter
	СР5030А		Bandwidth: 100 MHz, Max. continuous current: 30 Arms, Peak current: 50 A Switch Ratio: 100 mV/A, 1 V/A, Accuracy: 1 V/A (\pm 1% \pm 1 mA), 100 mV/A (\pm 1% \pm 10 mA), DC 12V/1.2A power adapter
	CP5150		Bandwidth: 12 MHz, Max. continuous current: 150 Arms, Peak current: 300 A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A (\pm 1% \pm 10 mA), 10 mV/A (\pm 1% \pm 100 mA), DC 12 V/1.2 A power adapter
	CP5500		Bandwidth: 5 MHz, Max. continuous current: 500 Arms, Peak current: 750 A Switch Ratio: 100 mV/A, 10 mV/A, Accuracy: 100 mV/A (\pm 1% \pm 10 mA), 10 mV/A (\pm 1% \pm 100 mA), DC 12 V/1.2 A power adapter
Differential Probe	DPB4080		Bandwidth: 50 MHz, Differential Range: 800 V (DC + Peak AC), 100 X/200 X/500 X/1000 X, Accuracy: ±1%, DC 9 V/1 A power adapter

Probe	Picture	Model	Description
Differential Probe	DPB5150		Bandwidth: 70 MHz, Differential Range: 1500 V (DC + Peak AC),50 X/500 X Accuracy: ±2%, DC 5 V/1 A USB adapter
	DPB5150A		Bandwidth: 100 MHz, Differential Range: 1500 V (DC + Peak AC), 50X/500X , Accuracy: ±2% DC 5 V/1 A USB adapter
	DPB5700		Bandwidth: 70 MHz, Differential Range: 7000 V (DC + Peak AC), 100X/1000X , Accuracy: ±2%, DC 5 V/1 A USB adapter
	DPB5700A		Bandwidth: 100 MHz Differential Range: 7000 V (DC + Peak AC), 100X/1000X Accuracy: ±2% DC 5 V/1 A USB adapter
High Voltage	HPB4010		Bandwidth: 40 MHz Differential Range: DC 10 KV, AC (rms): 7 KV (sine), AC (Vpp): 20 KV (Pulse) 1000X Accuracy: ≤3%
Isolated front end	ISFE		The USB Device interface allows a connection into the GPIB interface. USB-GPIB adapter allows the oscilloscope to easily send and receive commands through the GPIB. USB follows the USB2.0 specification. GPIB follows the IEEE488.2 standard.
Demo Board	STB-3		Output signals include square waves, sine, AM, fast edge , pulse, PWM, I2C, CAN, LIN etc. Used in teaching and demonstrations.
USB AWG Module	SAG1021	SACTO21 Set Value Automatic to active Signal Entry	Output Sine, Square, Ramp, pulse, Noise, DC and 45 built-in waveforms. The arbitrary waveforms can be accessed and edited by the EasyWave PC software

Ordering information			
Product Name	SDS1000X-E Series Digital Oscilloscope		
	SDS1104X-E 100 MHz Four Channels		
	SDS1204X-E 200 MHz Four Channels		
	SDS1202X-E 200 MHz Two Channels		
	USB Cable -1		
	Quick Start -1		
Standard Accessories	Passive Probe -4/2		
	Certification -1		
	Power Cord -1		
	16 Channels MSO Software (four channel series only)	SDS1000X-E-16LA	
	16 Channels Logic Analyzer (four channel series only)	SLA1016	
	AWG Software (four channel series only)	SDS1000X-E-FG	
	USB AWG Module Hardware (four channel series only)	SAG1021	
	WIFI Software (four channel series only)	SDS1000X-E-WIFI	
Optional Accessories	USB WIFI Adapter (four channel series only)	TL_WN725N	
	Isolated Front End	ISFE	
	STB Demo Source	STB-3	
	High Voltage Probe	HPB4010	
	Current Probes	CP4020/CP4050/CP4070/CP4070A/CP5030/CP5030A/ CP5150/CP5500	
	Differential Probes	DPB4080/DPB5150/DPB5150A/DPB5700/DPB5700A	

SDS1000X-E Series Super Phosphor Oscilloscope

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, function/arbitrary waveform generators, digital multimeters, DC power supplies, spectrum analyzers, isolated handheld oscilloscopes and other general purpose test instrumentation. Since its first oscilloscope, the ADS7000 series, was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement.

DISTRAME S.A. - Parc du Grand Troyes - Quartier Europe Centrale - 40, rue de Vienne - 10300 SAINTE-SAVINE Tél. : +33 (0)3 25 71 25 83 - Fax : +33 (0)3 25 71 28 98 - E-mail : infos@distrame.fr - Site internet : www.distrame.fr

> Follow us on Facebook: SiglentTech

