

R&S®RTx-K36: FREQUENCY RESPONSE ANALYSIS (BODE PLOT) OPTION ¹⁾

Customize your oscilloscope with the frequency response analysis option

- Easily and quickly analyze low frequency response on your oscilloscope with the R&S®RTx-K36 frequency response analysis (Bode plot) option
- ► The R&S®RTx-K36 frequency response analysis (Bode plot) option uses the oscilloscope's built-in waveform generator to create stimulus signals ranging in frequency from 10 Hz to 25 MHz. Measuring the ratio of DUT signal input and output at each test frequency, the oscilloscope plots gain and phase logarithmically
- Easily export and save results as an image or in CSV format for documentation or additional analysis

Common uses

Characterize the frequency response of a variety of electronics such as passive filters and amplifier circuits

Determine the gain and phase margin of switched-mode power supplies or linear regulators to determine the control loop stability

Measure the power supply rejection ratio or power supply ripple rejection (PSRR) to determine the power supply's output stability

Key specifications	
Frequency range	10 Hz to 25 MHz
Test modes	Fixed or custom amplitude profile
Points per decade	10 to 500 points
Plots	Logarithmic gain and linear phase
Analysis	Waveform markers and tabular view of test results

Your benefit	Features
Integrated low frequency response analysis on your scope	Use your oscilloscope to make low frequency phase and gain measurements. The application supports frequencies from 10 Hz to 25 MHz
Low entry price	The application with a two-channel R&S®RTB2000 is available for a fraction of the cost of a dedicated network analyzer. The application also runs on the R&S®RTM3000 and R&S®RTA4000 models for users who need a higher bandwidth oscilloscope
Easy documentation	Save test results to a USB device or to a PC (connected via LAN or USB MTP) for documentation

Profile the amplitude

	_				_				_			2018-10-18
ר ► (ىسا 🔍	_ http://www.	ŝ	ø	F	•						09:35
Undo Run/Stop 2	ioom FFT	i Mask	Reference	Amotation	Demo							**
Start: 100 Hz	Stop: 4	4.9 MHz	Points: 2	00 Pts/	Ampl	litude Profile				_	\sim	? Help
					Index	Frequen	q	Amplitude				
12 (0)											<u> </u>	2
0.10							100 Hz	SUO mV	В	ode Plot		Bode Plot
					2		1 kHz	100 mV		Amplitude		_
35 de					3	1	00 kHz	1.5 V		Profile		Vertical
s3 d8			Amplitud	de					X	oints	C	
											3	\odot
6 43								1.5				Gen
-13 dl										Configuratio	on	P
1> 100 Hz			N	Min: 10	mV			Max: 5 V		oad		Display
15508+11					_	-	_			500	High-7	
22.4				8	9	k	m	Enter		Points ner D	lacada (C	
						ĸ		enter	- 1	onits per o	200 Ptr	
-52 d		A: 100 mM								i i na stan sa stan stan stan stan stan sta	200 Pits	P1
			4	5	6	M	μ	Back		Maximum H	mase C	File
es de		2012									100 -	Ö
U Bode Plot				2	3	G	n	Clear		Display		Setua
Marker i	6.92 kHz									Meas. Points		
2	2.11 MHz	-52.4 (٥		+	Evo	n			•] 82	ark	
∆ (1→2)	2.11 MHz	-52.36		•	-	LVb	P					- 60
CI 9.3 mV/	n CZ 8.	.2 m¥/ ′		elect						Ampl. 0.2		Menu

Profiling the amplitude output level of the generator helps suppress the noise behavior of your DUT when measuring the control loop response or PSRR. Profiling also improves the signal-to-noise ratio.

leasure	ment tab	le								
Uodo Reav/Stop	Zoom FFT Iz Stop: 4.97	Mask Reference MHz Points: 5	Annotation 0 00 Pts/	Ti o			Gen.: O	0	Ampl. Profile	2016 10
Bode Plot: Input =	C1, Output = C2									T ^e
917	6.79kHz		0.324B		36.45*		100mVpp			
918	6.82kHz		0.224B				100mVpp			
919	6.85kHz		. 1648		36.36*		100mVpp			
	6.89kHz		0.094B				100m¥pp			
921	6.92kHz		0.0248		36.29*		100mVpp			
	6.95kHz		0.054B				100mVpp			
	6.98kHz).13dB				100mVpp			
	7.01kHz		0.204B				100mVpp			
925	7.05kHz		0.2848				100mVpp			
926	7.08kHz		0.3448				100mVpp			
927	7.11kHz		0.424B		36.09*		100mVpp			
928	7.14kHz		0.494B		36.00*		100mVpp			
929	7.18kHz		0.564B		35.93*		100mVpp			
930	7.21kHz		D.674B		35.98*		100mVpp			
	7.24kHz		0.7448		36.89*		100mVpp	-		
Samples: 917–931	/ 2360									
Marker	Frequency	Gain	Phase		_					
1	6.92 kHz	0.02 d8	36.29		C1 C2		Ω	0	? ×	
2	Z.12 MHz	-52.68 d8	-2.54		hest Output	Ro	Repeat Reset	Setuo	Help Exit	
2 (1-92)	M and a c	-92.01-00	-99'94							
8.5 mV/	, CZ 8.3 m	/ 3	64	Gain	13 dB/	Phase	35 7	Ampl.	0.2 v/	

The measurement results table provides detailed information about each measured point (frequency, gain and phase shift). When using markers, the applicable row of the results table is highlighted. Screenshots and table results can be quickly saved to a USB device for reporting.

Improve resolution

Choose the points per decade to set up and modify the resolution of your plot. The oscilloscope supports up to 500 points per decade. Drag markers to the desired position directly on the plotted trace and easily determine the phase and gain margin.

Low-noise accessories

Accurate control of loop response or PSRR characterization highly depends on choosing the right probes, since the peak-to-peak amplitudes of both V_{in} and V_{out} can be very low at some test frequencies. The low-noise R&S®RT-ZP1X 1:1 passive, 38 MHz bandwidth probe improves dynamic range.

Model configuration information					
Base model	Order No.				
R&S®RTB2002 oscilloscope, 70 MHz, 2 channels	1333.1005.02				
R&S®RTB2004 oscilloscope, 70 MHz, 4 channels	1333.1005.04				
R&S®RTM3002 oscilloscope, 100 MHz, 2 channels	1335.8794.02				
R&S®RTM3004 oscilloscope, 100 MHz, 4 channels	1335.8794.04				
R&S®RTA4004 oscilloscope, 200 MHz, 4 channels	1335.7700.04				
Software option	Order No.				
R&S®RTB-K36 frequency response analysis (Bode plot) option	1335.8007.02				
R&S®RTM-K36 frequency response analysis (Bode plot) option	1335.9178.02				
R&S®RTA-K36 frequency response analysis (Bode plot) option	1335.7975.02				
Application bundle	Order No.				
R&S®RTB-PK1 consists of the following options: -K1, -K2, -K3, -K15, -K36, -B6	1333.1092.02				
R&S®RTM-PK1 consists of the following options: -K1, -K2, -K3, -K5, -K6, -K7, -K15, -K18, -K31, -K36, -B6	1335.8942.02				
R&S®RTM-PK1US consists of the following options: -K1, -K2, -K3, -K5, -K6, -K7, -K15, -K31, -K36, -B6	1335.9190.02				
R&S®RTA-PK1 consists of the following options: -K1, -K2, -K3, -K5, -K6, -K7, -K18, -K31, -K36, -B6	1335.7775.02				
R&S®RTA-PK1US consists of the following options: -K1, -K2, -K3, -K5, -K6, -K7, -K31, -K36, -B6	1335.7998.02				
Probe	Order No.				
R&S®RT-ZP1X, 38 MHz, 1 MΩ, 1:1	1333.1370.02				
Low frequency injection transformers					

 $\begin{array}{l} \mbox{Picotest J2120A for PSRR (10 Hz to 10 MHz)} \\ \mbox{Picotest J2100A (1 Hz to 5 MHz) or J2101A (10 Hz to 45 MHz)} \end{array} \\ \end{array}$

Omicron WIT100 wide injection transformer (1 Hz to 10 MHz) Omicron B-LFT100 (1 Hz to 30 KHz)

All options can be retrofitted

DISTRAME S.A. - Parc du Grand Troyes - Quartier Europe Centrale - 40, rue de Vienne - 10300 SAINTE-SAVINE Tél. : +33 (0)3 25 71 25 83 - Fax : +33 (0)3 25 71 28 98 - E-mail : infos@distrame.fr - Site internet : www.distrame.fr