Lildistrame

32 analog channels + 32 logic channels

The Memory HiCorder MR8827 achieves isolated input between the main unit and channel or between channels, at a maximum sampling speed of $20 \mathrm{MS} / \mathrm{s}$ on all channels.

It provides mixed recording that combines 32 analog channels and 32 logic channels, and logic input can be expanded up to 64 channels.
Welcome to the next generation of Hioki Memory HiCorders that deliver multichannel waveform recording of a diverse array of signals to meet complex and demanding applications.

MR8827 - Evolving to the Next Stage of High-Speed Waveform Recording

The high-performance 8826 delivered the most analog channels out of all portable-type Memory HiCorders. The new MEMORY HiCORDER MR8827 inherits that concept and evolves even further.

20x Sampling Speed

A/D converter integrated in the input amp

1MS/s 20MS/s

The sampling speed (for all channels simultaneously) increased by 20 times, while maintaining isolated input.

8x Internal Memory Capacity

64MW 512MW
With 8 times more internal memory capacity from 64 MW to 512 MW, you can now record signals of fast events easily and for extended periods of time.

| 2x Logic Input Channels

32ch 64ch
A maximum of 8 logic probes can be inserted in the main unit. Use of 2 Logic Unit 8973 will add 8 more connections, supporting 64 channel logic signal input. (This reduces the number of available analog channels to 28.)

I Storage Devices and Media
USB Memory/CF Card SSD (Solid State Drive)

Use various storage devices and media with more capacity and faster writing speeds than conventional drives or PC cards. The optional internal SSD has 128 GB of capacity so you can store large amounts of data.

| LCD Resolution

10.4 inch TFT 10.4 inch SVGA $640 \times 480>800 \times 600$

Overlapping waveforms are easier to identify now with a new high resolution LCD.

| 2x Paper Feeding Speed

$25 \mathrm{~mm} / \mathrm{sec} 50 \mathrm{~mm} / \mathrm{sec}$

Use of a high-speed thermal printer gives you 2 times the printing speed.

Transferring speed of stored data from internal memory or SSD to the PC has greatly increased.

Data transfer time \rightarrow

transfer speed!
Conventional transfer time

| 3x PC Transfer Speed

3 times faster

| Easy Setup of Recording Paper

No more hassles of feeding recording paper between the rubber roller and the thermal head. Just drop it in to set it up.

| A4 Size Printer

Print in fine detail, with 2 times the paper feeding speed. Get a printout of enlarged waveforms on A4 size paper so you can check them easily on-site.

Scalable Input Channels

A maximum of 16 modules can be connected on the rear side. The main unit also has connectors for connecting 8 logic probes.

| Isolated Input for Security

Isolation element

The MR8827 differentiates itself from typical oscilloscopes by providing complete isolation for the input of each channel, and between each channel and the main frame, enabling you to handle electrical potential differences among multiple signals without any concern.

| High Resolution LCD

Conventional devices used a 640×480 dot TFT LCD, but the next-generation MR8827 uses an 800×600 dot SVGA high resolution LCD to make it even easier to identify overlapping measured waveforms.

Signal Input and Output

The right module for your measurement needs

Inverter / UPS Test

- Operation testing and evaluation during load fluctuation
- Confirmation of UPS switching

| Recommended |
| :---: | :--- |
| units |\quad| ANALOG UNIT 8966 |
| :--- |
| LOGIC UNIT 8973 |
| CURRENT UNIT 8971 |

Perfect for inverter and UPS evaluation / start-up tests. Record using both logic (control signals) and analog (primary/secondary voltage or current for a UPS or inverter).

Power Monitor and Logger

- Identify power fluctuations when power supply is turned ON/OFF and during load fluctuations
- Long-term fluctuations in power

Load the analog output for the rms (instant power / voltage / current, etc.) calculated by the power analyzer, or import the waveform output from the power analyzer to observe data for long-term tests or irregular waveforms.

Control Simulation

- Generate simulated output of each type of sensor signal
- Fluctuating simulated output for 12 V DC car batteries

ARBITRARY WAVEFORM GENERATOR UNIT U8793 WAVEFORM GENERATOR UNIT MR8490 PULSE GENERATOR UNIT MR8791

Use actual waveforms to perform testing on control boards, such as for engine control, airbags, brake systems, power steering, and active suspension. This allows efficient simulation of actual waveforms obtained from cars.

UPS

Inverter

Perfect for control testing of automobiles, high speed trains, and traditional trains

	Generation	Voltage	DC voltage	Generation	Pulse	Voltage
13 units	ARBITRARY WAVEFORM GENERATOR UNIT U8793	HIGH VOLTAGE UNIT U8974	DIGITAL VOLTMETER UNIT MR8990	WAVEFORM GENERATOR UNIT MR8790	PULSE GENERATOR UNIT MR8791	ANALOG UNIT 8966
to choose	No. of channels: 2 Arbitrary waveform output	Measurement resolution: 16-bit 1/1600 of measurement range	Measurement resolution: 24-bit $1 / 50000$ of measurement range	No. of channels: 4 Waveform output	No. of channels: 8 Pulse output	Measurement resolution: 12-bit $20 \mathrm{MS} / \mathrm{s}$ high-speed sampling
	- Output frequency range 10 m Hz to 100 kHz - Max. output: 15 V	- High voltage - Commercial power supply (primary/secondary) - Power equipment characteristics testing DISTRAME SA - Tél.	- Multi-channel - Minute sensor voltage - EV battery voltage $\therefore 0325712583-\text { info }$	- DC output: - 10 V to 10 V - Sine wave output 10 mHz to 20 kHz s@distrame.fr-www.	- Pulse output 0.1 Hz to 20 kHz - Pattern output distrame.fr	- Various amps - Transducers - Sensors - Industrial meters

Abundant modules

Hioki has added new high-performance modules in response to overwhelming demand.
The Memory HiCorder now supports a wide variety of measurements.

Output and record results seamlessly

Just one MEMORY HiCORDER gives you a function generator mode, arbitrary waveform generator mode, and waveform measurement mode. This makes it easy to observe waveforms while varying test conditions, such as changing the signal's amplitude and frequency and programming various waveforms to output in order.

Output recorded waveforms without modification

For example, you could output actual waveforms recorded from a car without modification, and then use them for standalone testing. You can also generate isolated output of up to 15 V without a generator or amplifier, which is traditionally necessary in order to generate output while varying the signal's amplitude and frequency.

Process actual waveforms for reproducibility testing

Process and calculate signals recorded with the MEMORY HiCORDER and output the arbitrary waveforms that you create.

Waveform Maker Software included

After you install the included SF8000 Waveform Maker software on your computer, you can create waveforms easily by either entering them directly or by entering the functions behind them. You can also quickly add noise and multiply waveforms.

1000 V DC, 700 V AC high-voltage direct input

Since you can directly input up to 1000 V DC and 700 V AC, a differential probe is no longer necessary.
Maximum rated voltage to ground is 1000 V for CAT III and 600 V for CAT IV environments.

Temperature	Voltage	Distortion	Frequency, RPM	Current	Voltage	Contact
TEMP UNIT 8967	HIGH RESOLUTION UNIT	STRAIN UNIT U8969	FREQ UNIT 8970	CURRENT UNIT 8971	DC/RMS UNIT 8972	LOGIC UNIT 8973
Measurement resolution: 16-bit $1 / 1000$ of measurement range	Measurement resolution: 16-bit $1 / 1600$ of measurement range	Measurement resolution: 16 -bit $1 / 1250$ of measurement range	Measurement resolution: 16-bit $1 / 2000$ of measurement range	Measurement resolution: 12-bit Clamp sensor direct connection	Measurement resolution: 12-bit RMS measurement	No. of channels: 16 Observation of control signal
- Thermocouple K, J, E, T, N, R, S, B, W	- Supply voltage - Primary / secondary inverter voltage - Motor voltage, etc. \qquad	- Strain gauge converter - Dynamic strain • Vibration - Pressure Acceleration - Weight, etc. E SA-Tél. : 03257	- Encoder - Rotating pulse 2583-infos@distra	- Supply current - Inverter current - Motor current, etc. me.fr - www.distrame	- Supply voltage - Primary / secondary inverter voltage - Motor voltage, etc. \qquad	- Voltage / non-voltage contacts - Relay signals - AC / DC signals

Data Storage

Save on devices and media

Input signals after A/D conversion stored in internal memory can be saved on the optional internal SDD, USB memory, or CF card.

| Transfer to PC

Check and analyze data saved in the internal SSD, USB memory, or CF card, by transferring it to a PC, via LAN or USB.

LAN Connection

Use the HTTP function to operate MR8827 with a browser on a PC connected via LAN. You can also use the FTP function to retrieve data from internal memory, devices or media connected to the main unit.

USB Connection

Use a PC to retrieve data saved on devices and media such as internal memory, SSD, or CF card connected to the main unit, via USB.

Analysis software

WAVE PROCESSOR 9335

(Software sold separately)

- Waveform display, calculations
- Print function

■ 9335 Brief Specifications

Operating environment	Windows 10/8/7 (32/64-bit)
Functions	- Display functions: Waveform display, X-Y display, Cursor function, etc. - File loading: Readable data formats (.MEM, REC, .RMS, POW)/ Maximum loadable filie size: Maximum file size that can be saved by a given device (file size may be limited depending on the computer con- figuration) -Data conversion: Conversion to CSV format, Batch conversion of mul- tiple files, etc.
Printing	- Print function: Printing image file output (expanded META type, ".EMF") - Print formatting: 1 up, 2-to-16 up, 2-to-16 rows, X-Y 1-to-4 up, preview, hard copy

| LAN COMMUNICATOR 9333
(Software sold separately)

- Auto-save waveform data to PC
- Remote control via LAN connection
- Save in CSV format and transfer to spreadsheet programs

- 9333 Brief Specifications

Operating environment

Windows 10/8/7 (32/64-bit), Vista (32-bit), XP, (9333 ver. 1.09 or later)

- Auto-saves waveform data to PC, Remote control of Memory HiCorder (by sending key codes and receiving images on screen), print report, print images from the screen, receive waveform data in same format as waveform files from the Memory HiCorder (binary only) - Waveform data acquisition: Accept auto-saves from the Memory HiCorder, same format as auto-save files of Memory HiCorder (binary only), print automatically with a Memory HiCorder from a PC. The Memory HiCorder's print key launches printouts on the PC - Waveform viewer: Simple display of waveform files, conversion to CSV format, etc.

iPad App for Memory HiCorder HMR Terminal

Free app (exclusively for iPad) downloadable from the App Store

- Freely control waveforms using iPad's gesture controls
- Fingertip operation of Max. 32 channels of waveform data
- Operate the Memory HiCorder via network You can change settings, and monitor waveforms during measurement. *New function on Ver 2.0
Data can view by the iPad using Hioki's dedicated apps available from the App Store. Search for "HIOKI" and download the "HMR Terminal" app.

*iOS is a registered trademark of Cisco Technology, Inc. andor its affiliates in the United States and certain other countries.
*iPhone, iPad, iPad mini, iPad Pro and IPod touch are trademarks of Apple Inc.
${ }^{*}$ Apple and the Apple logo are trademarks of Apple Inc. App Store is aservice mark of Apple Inc.
*Apple and the Apple logo are trademarks of Apple Inc. App Store is a service mark of Apple Inc.
${ }^{\text {*Micresoff, Windows, Windows }}$ Sist, and Excel are either regisered trademarks or trademarks of Wicrosof T Copporation in the United Sates andor other countries.
■ HMR Terminal Brief specifications (free software)

Operating environment	iOS on the iPad (Apple Inc.)
Functions	- Data acquisition: Send to iPad via FTP using a WiFi router, or load to iPad via iTunes (PC app) - Intuitively operate waveform level searches, maximum / minimum/ average values, zero position adjustment, and more at your fingertips -Waveform monitoring - Meter setting *Logic waveforms and computational waveforms are not supported.

Wave Viewer Wv

(Bundled software)

- Check waveforms with binary data on a PC
- Save data in CSV format and transfer to spreadsheet programs

■ Wave Viewer (Wv) Brief Specifications

Operating environment	Windows 10/8/7 (32/64-bit)
Functions	- Simple display of waveform files - Convert binary data files to text format, CSV, etc. - Scroll function, enlarge/reduce display, jump to cursor/trig- ger position, etc.

P
 erfect for recording a combination of analog and logic signals that require multiple channels.

Electric power

Power electronics

I Transformer Interruption Tests

Interchannel isolation allows for safe circuit connections. Simultaneous high-speed sampling can record waveforms before and after the interruption, and allows you to input many control and circuit signals.

Battery Charge/Discharge Tests

Input and test the voltage of each battery cell. The MR8827 is built for up to 400 V DC input, protecting it even if high voltage is applied when there is a short-circuit.

| Inverter / UPS Test

Perfect for inverter and UPS evaluation and start-up tests. Record using both logic (control signals) and analog input (primary/secondary voltage or current for a UPS or inverter).

| Power Monitor and Logger

By loading the analog output for the effective value (instant power / voltage / current, etc.) calculated by the power analyzer, or by importing the waveform output from the power analyzer to MR8827, you can observe data for longterm tests or irregular waveforms.

R
 ecord a diverse array of signals simultaneously

Mechatronics

Automotive

| ECU Evaluation

The 32 analog channels and 32 logic channels work great for observing input and output signals of an Engine Control Unit. Over 4 hours of recording can be achieved with 1 ms sampling.

Engine Strain Measurements

Use the Strain Unit U8969 to perform strain measurements of up to 32 channels. You can use the numerical value calculation function to automatically calculate the maximum value, minimum value, and P-P value of strain waveforms.

| Vibration / Endurance Tests

Use the long 512MW memory to observe vibration waveforms easily (Memory function). Also, with the recorder function, you can perform long-term observation by capturing the waveform peaks while sampling at high speeds.

| Injection Molder Evaluation

Along with a pneumatic pressure or valve closure, you can record the logic input from control signals. Select from a rich lineup of Hioki input units that support a wide range of sensors and converters.

Main unit Specifications

$\left.\left.\begin{array}{l|l}\hline \text { Basic specifications (Accuracy guaranteed for } 1 \text { year, Post-adiustment accuracy guaranteed for } 1 \text { year) }\end{array}\right] \begin{array}{l|l}\text { Measurement func- } \\ \text { tions }\end{array} \begin{array}{l}\text { MEMORY (high-speed recording) } \\ \text { RECORDER (real-time recording) } \\ \text { X-Y RECORDER (XXY real-time recording) } \\ \text { FFT (frequency analysis) }\end{array}\right]$

PRINTER UNIT U8350 (Factory-installed option)

Features	Printer paper one-touch loading, high-speed thermal printing
Recording paper	$216 \mathrm{~mm}(8.50 \mathrm{in}) \times 30 \mathrm{~m}$ (98.43 ft), thermal paper roll (use the 9231 paper) Recording witdh: 200 mm (7.87 in) 20 division full scale, 1 div $=10 \mathrm{~mm}$ (0.39 in) 80 dots
Recording speed	Max. 50 mm (1.97 in)/sec
Paper feed density	10 lines/mm
Display	
Display	10.4 inch SVGA-TFT color LCD (800×600 dots) (Time axis 25 div \times Voltage axis 20 div, X-Y 20 div $\times 20$ div)
Languages	English, Japanese, Korean, Chinese
Waveform display zoom/compression	Time axis: $\times 10$ to $\times 2$ (zoom at MEMORY function only), $\times 1, \times 1 / 2$ to $\times 1 / 20000$, Voltage axis: $\times 100$ to $\times 2, \times 1, \times 1 / 2$ to $\times 1 / 10$
Variable display	Upper/Lower limit set, display/div set
Scaling	10:1 to $1000: 1$, automatic scaling for various probes Manual scaling (conversion ratio setting, 2 -point setting, unit setting)
Comment input	Alphanumeric input (title, analog and logic channels) Simple input, history input, phrase input
Logic waveform	Display point move 1% step, Line width 3 types
Display partition	Max. eight divisions
Monitor function	- Input level monitor - Numerical value (Sampling $10 \mathrm{kS} /$ fixed, refresh rate 0.5 s)
Other display functions	- Waveform inversion (positive/negative) - Cursor measurement (A, B, 2-cursor, for all channels) - Vernier function (amplitude fine adjustment) - Zoom function (horizontal screen division, zoomed waveform shown in lower section) - 16 selectable colors for waveform display - Zero position shift in 1% steps for analog waveform - Global zero adjust for all channels and all ranges

MEMORY (high-speed recording)	
Time axis	$5 \mu \mathrm{~s}$ to $5 \mathrm{~min} / \mathrm{div}$ (100 samples/div) 26 ranges, External sampling (100 samples/div, or free setting), Time axis zoom: $\times 2$ to $\times 10$ in 3 stages, compression: $1 / 2$ to $1 / 20000$ in 13 stages
Sampling period	$1 / 100$ of time axis range (minimum 50 ns period)
Recording length	Built-in presets: (at 4, 8, 16ch mode) 25 to 20000 div, (at 4, 8 ch mode) 25 to 500000 div (at 4 ch mode) 25 to 1000000 div Arbitrary presets: setting in 1 div steps, Max. 1280000 div (at 4ch mode), 640000 div (at 8 ch mode), 320000 div (at 16 ch mode), 160000 div (at 32ch mode)
Pre-trigger	Record data from before the trigger point at 0 to $+100 \%$ or -95% of the recording length in 15 stages, or in 1 div step settings
Numerical calculation	- Simultaneous calculation for up to 16 selected channels Average value, effective (rms) value, peak to peak value, maximum value, time to maximum value, minimum value, time to minimum value, period, frequency, rise time, fall time, standard deviation, area value, X-Y area value, specified level time, specified time level, pulse width, duty ratio, pulse count, four arithmetic operations, time difference, phase difference, high-level and low-level - Calculation result evaluation output: GO/NG (with open-collector 5 V output) - Automatic storing of calculation results
Waveform processing	- For up to 16 freely selectable channels, the following functions can be performed Four arithmetic operations, absolute value, exponentiation, common logarithm, square root, moving average, differentiation (primary, secondary), integration (primary, secondary), parallel displacement along time axis, trigonometric functions, reverse trigonometric functions, integration time correction for each NPLC setting, auto-saves of calculation results
Memory segmentation	- Max. 1024 blocks, sequential storage, multi-block storage
Other functions	- X-Y waveform synthesis (1 screen, 4 screens) - Overlay (always overlay when started/overlay only required waveforms) - Automatic/ Manual/ A-B cursor range printing/ Report printing - Logging is not available

Memory recording method

Sampling is done at the set sampling period.

RECORDER (Real-ime recording

Time axis	10 ms to 1 hour/div, 19 ranges, time axis resolution 100 points/div Note: Out of data acquired at selected sampling rate, only maximum and minimum value data determined using 100 points/div units are stored Time axis compression selectable in 13 steps, from $\times 1 / 2$ to $\times 1 / 20000$
Sampling rate	$1 / 10 / 100 \mu \mathrm{~s} 1 / 10 / 100 \mathrm{~ms}$ (selectable from $1 / 100$ or less of time axis)
Real-time printing	Supported * Real-time printing is possible at time axis settings slower than $500 \mathrm{~ms} /$ div * Delayed print is performed when recording length is not set to "Continuous" and time axis setting is $10 \mathrm{~ms}-200 \mathrm{~ms} / \mathrm{div}$ * When recording length is set to "Continuous" and time axis setting is 10 ms $200 \mathrm{~ms} /$ div, manual printing can be performed after measurement stop
Recording length	Built-in presets of 25-50000 div, or "Continuous" or arbitrary setting in 1 div steps (max. 80000 div)
Waveform memory	Store data for most recent 80000 div in memory
Auto save	Data is automatically saved on CF card, USB memory stick or internal SSD after measurement stops
Other functions	- Manual/A-B cursor range printing/ Report printing - Logging is not available

Recorder recording method

High-speed sampling is performed at the set sampling frequency, culling data
other than the maximum and minimum values to create the recording data of a certain time.

Sampling period
High-speed samplin

X-Y RECORD	(X-Y real-time recording)
Sampling period	$1 / 10 / 100 \mathrm{~ms}$ (dot), $10 / 100 \mathrm{~ms}$ (line)
Recording length	Continuous
Screen, Printing	Split screen (1 or 4), Manual printing only
Number of X-Y	1 to 8 phenomenon
X-Y channel setting	Any 8 channels out of 16 can be selected for X axis and Y axis respectively
X-Y axis resolution	25 dots/div (screen), horizontal 80 dots/div \times vertical 80 dots/div (printer)
Waveform memory	Sampling data for last 16000000 points are stored in memory
Pen up/down	Simultaneous for all phenomena
External pen control	Possible via external input connector (simultaneous up/down for all phenomena)

FFT	
Analysis mode	Storage waveform, Linear spectrum, RMS spectrum, Power spectrum, Density of power spectrum, Cross power spectrum, Auto-correlation function, Histogram, ,ransfer function, Cross- correlation function, Impulse response, Coherence function, $1 / 1$ Octave analysis, 1/3 Octave analysis, LPC analysis, Phase spectrum
Analysis channels	Selectable from all analog input channels
Frequency range	133 mHz to 8 MHz, External, (resolution 1/400, 1/800, 1/2000, 1/4000)
Number of sampling points	$1000,2000,5000,10000$ points
Window functions	Rectangular, Hanning, Hamming, Blackman, Blackman-Harris, Flat-top, Exponential
Display format	Single, Dual, Nyquist, Running spectrum
Averaging function	Time axis / frequency axis simple averaging, Exponential averaging, Peak hold (frequency axis, Averaging times (2 to 10000 times)
Print functions	Same as the MEMORY function (partial print not available)

Trigger functions

Trigger mode	MEMORY (high-speed recording), FFT: Single, Repeat, Auto RECORDER (real-time recording): Single, Repeat
Trigger sources	CH1 to CH32 (analog), Standard Logic 32ch + Logic Unit (Max. 2 units 32 channels), External (a rise of 2.5V or terminal short circuit), Timer, Manual (either ON or OFF for each source), Logical AND/OR of sources
	- Level: Triggering occurs when preset voltage level is crossed (upwards or downwards) \bullet Voltage drop: Triggering occurs when voltage drops below peak voltage setting (for 50/60 Hz AC power lines only) - Window: Triggering occurs when window defined by upper and lower limit is entered or exited \bullet Period: Rising edge or falling edge cycle of preset voltage value is monitored and triggering occurs when defined cycle range is exceeded • Glitch: Triggering occurs when pulse width from rising or falling edge of preset voltage value is under run \bullet Event setting: Event count is performed for each source, and triggering occurs when a preset count is exceeded
Trigger types	Logic: 1, 0, or \times, Pattern setting

Other functions

Waveform judgment
 function

 (In MEMORY or FFT function)Area comparison with reference waveform area for time domain waveform, X-Y waveform, or FFT analysis waveform - Parameter calculated value comparison with reference value - Output: GO/NG decision, Open-collector 5V, *100 $\mathrm{msec} /$ div (1 msec sampling) and thereafter allows for evaluation in almost real-time.

How is FFT Analysis Performed?

Designate a range of the waveform stored in the memory function to perform FFT analysis. It is rendered simultaneously on the screen.

Convert data measured with few calculation points into data with many points for re-analysis.
*Not possible with frequency averaging ON

Display the spectrum as it changes over time in 3-D.

Scale by dB. Input the overall value (sum of the power spectrum) directly as a dB value.

Optional Specifications (sold separately)

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times$
$19.8 \mathrm{~mm}(0.78 \mathrm{in}) \mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. 250 g (8.8 oz)

Accessories: None

ANALOG UNIT 8966	66 (Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time and zero adjustment; Accuracy guaranteed for 1 year, Postradjustment accuracy guaranteed for 1 year)
Measurement functions	Number of channels: 2, for voltage measurement
Input terminals	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to ground: 300 V AC or DC (with input isolated from the main unit, the maximum voltage that can be applied between input channel and chassis, and between input channels without damage)
Measurement range	5 mV to $20 \mathrm{~V} / \mathrm{div}, 12$ ranges, full scale: 20 div, AC voltage for possible measurement/display using the memory function: 280 V rms, Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 50 \mathrm{k} / 500 \mathrm{kHz}$
Measurement resolution	1/100 of range (using 12-bit A/D conversion)
Maximum sampling rate	$20 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling in 2 channels)
Measurement accuracy	$\pm 0.5 \%$ of full scale (with filter 5 Hz , zero position accuracy included)
Frequency characteristics	DC to $5 \mathrm{MHz}-3 \mathrm{~dB}$, (with AC coupling: 7 Hz to $5 \mathrm{MHz}-3 \mathrm{~dB}$)
Input coupling	AC/DC/GND
Maximum input voltage	400 V DC (maximum voltage that can be applied between input connectors without damage)

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$
(0.78 in) H $\times 204.5 \mathrm{~mm}(8.05 \mathrm{in}) \mathrm{D}$, approx. $240 \mathrm{~g}(8.5 \mathrm{oz})$
Accessories: Ferrite clamp $\times 2$
TEMP UNIT $8967 \quad \begin{aligned} & \text { (Accuracy at } 23 \pm 5^{\circ} \mathrm{C} / 73 \pm 3^{\circ} \mathrm{F}, 20 \text { to } 80 \% \text { rhater } 30 \text { minutes of warm-up time and zero } \\ & \text { adjustment; Accuracy } \\ & \text { guaranteed for } 1 \text { year, Post-adjustment accuracy guaranteed for } 1 \text { year) }\end{aligned}$
Measurement functions $\begin{aligned} & \text { Number of channels: } 2, \text { for temperature measurement with thermocouple (voltage } \\ & \text { measurement not available) }\end{aligned}$ Thermocouple input: plug-in connector, Recommended wire diameter: single-wire, 0.14 to 1.5 mm^{2}, braided wire 0.14 to $1.0 \mathrm{~mm}^{2}$ (conductor wire diameter min. 0.18 mm), AWG 26 to 16

Input terminals
Temperature measurement
range
Note: Upper and lower limit values
depend on the thermocouple
Thermocouple range (JIS C 1602-1995) (ASTM E-988-96) Data refresh rate Measurement accuracy

Max. rated voltage to ground: 300 V AC or DC (with input isolated from the main unit, the maximum voltage that can be applied between input channel and chassis, and between input channels without damage)
Temperature measurement
range
$10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right) / \operatorname{div}\left(-100^{\circ} \mathrm{C}\right.$ to $200^{\circ} \mathrm{C}\left(-148^{\circ} \mathrm{F}\right.$ to $\left.\left.392^{\circ} \mathrm{F}\right)\right), 50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right) /$ div $\left(-200^{\circ} \mathrm{C}\right.$ to $1000^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F}\right.$ to $\left.\left.1832^{\circ} \mathrm{F}\right)\right), 100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right) / \operatorname{div}\left(-200^{\circ} \mathrm{C}\right.$ to $2000^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.\left.3632^{\circ} \mathrm{F}\right)\right), 3$ ranges, full scale: 20 div,
Measurement resolution: 1/1000 of measurement range (using 16 -bit A / D conversion)
K: $-200^{\circ} \mathrm{C}$ to $1350^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2462^{\circ} \mathrm{F}\right)$, J: $-200^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2012^{\circ} \mathrm{F}\right)$, E: $-200^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.1472^{\circ} \mathrm{F}\right)$, T: $-200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.752^{\circ} \mathrm{F}\right), \mathrm{N}:-200^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$
$\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2372^{\circ} \mathrm{F}\right)$, R: $0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.3092^{\circ} \mathrm{F}\right)$ S: $0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.3092^{\circ} \mathrm{F}\right)$, $\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2372^{\circ} \mathrm{F}\right), \mathrm{R}: 0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.3092^{\circ} \mathrm{F}\right), \mathrm{S}: 0^{\circ} \mathrm{C}$ to $1700^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.3092^{\circ} \mathrm{F}\right)$,
$\mathrm{B}: 400^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right.$ to $32722^{\circ} \mathrm{F}$, W (WRes-26): $0^{\circ} \mathrm{C}$ to $2000^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.3632^{\circ} \mathrm{F}\right)$, Reference junction compensation: internal/ external (switchable), Line fault detection ON OFF possible
3 methods, Fast: 1.2 ms (digital filter OFF), Normal: 100 ms (digital filter $50 / 60 \mathrm{~Hz}$), Slow: 500 ms (digital filter 10 Hz)
Thermocouple K, J, E, T, N: $\pm 0.1 \%$ of full scale $\pm 1^{\circ} \mathrm{C}\left(\pm 1.8^{\circ} \mathrm{F}\right)\left(\pm 0.1 \%\right.$ of full scale $\pm 2^{\circ} \mathrm{C}$ $\left(\pm 3.6^{\circ} \mathrm{F}\right)$ at $-200{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}\left(-328^{\circ} \mathrm{F}\right.$ to $\left.\left.32^{\circ} \mathrm{F}\right)\right)$,
Thermocouple R, S, B, W $\mathrm{W} \pm 0.1^{2} \%$ of full scal Thermocouple R, S, B, W: $\pm 0.1 \%$ of full scale $\pm 3.5^{\circ} \mathrm{C}\left(\pm 6.3^{\circ} \mathrm{F}\right)$ (at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to less than $400^{\circ} \mathrm{C}$ $\left(752^{\circ} \mathrm{F}\right)$; However, no accuracy guarantee of less than $400^{\circ} \mathrm{C}\left(752^{\circ} \mathrm{F}\right)$ for B$), \pm 0.1 \%$ f.s. $\pm 3^{\circ} \mathrm{C}$ Reference junction compensation
Reference junction compensation accuracy: $\pm 1.5^{\circ} \mathrm{C}\left(\pm 2.7^{\circ} \mathrm{F}\right)$ (added to measurement accuracy
with internal reference junction compensation)
Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$
$(0.78 \mathrm{in}) \mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$
Accessories: None

HIGH RESOLUTION UNIT 8968	N UNIT $8968 \quad$ (Accuracy at $23 ~+5^{\circ} \mathrm{C} / 73 \pm 3{ }^{\circ} \mathrm{F}, 20$ to 80%,h a alter 30 minutes of wamm-up time and zero adjustment; Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)
Measurement functions	Number of channels: 2, for voltage measurement
Input terminals	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to ground: $300 \mathrm{~V} \mathrm{AC}, \mathrm{DC}$ (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Measurement range	5 mV to $20 \mathrm{~V} /$ div, 12 ranges, full scale: 20 div, AC voltage for possible measurement/ display using the memory function: 280 V rms, Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 50 \mathrm{k} \mathrm{Hz}$
Anti-aliasing filter	Integrated filter for suppressing aliasing distortion caused by FFT processing (automatic cutoff frequency setting/OFF)
Measurement resolution	1/1600 of measurement range (using 16-bit A/D conversion)
Maximum sampling rate	$1 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling in 2 channels)
Measurement accuracy	$\pm 0.3 \%$ of full scale (with filter 5 Hz , zero position accuracy included)
Frequency characteristics	DC to $100 \mathrm{kHz}-3 \mathrm{~dB}$ (with AC coupling: 7 Hz to $100 \mathrm{kHz-3} \mathrm{~dB}$)
Input coupling	AC/DC/GND
Maximum input voltage	400 VDC (maximum voltage that can be applied between input connectors without damage)
Dimensions and mass: approx. 106 mm (4.17 in) $\mathrm{W} \times 19.8 \mathrm{~mm}$ (0.78 in) $\mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $245 \mathrm{~g}(8.6 \mathrm{oz})$ Accessories: Conversion cable L9769 $\times 2$ (cable length $60 \mathrm{~cm} / 1.97 \mathrm{ft}$)	
STRAIN UNIT U8969 ${ }^{\text {a }}$ (Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm \pm{ }^{\circ} \mathrm{F}, 80 \%$ rh or less, after 30 minutes of warm-up time and auto-	
Measurement functions	Number of channels: 2, for distortion measurement (electronic auto-balancing, balance adjustment range within $\pm 10000 \mu \varepsilon$ or less)
Input terminals	NDIS connector EPRC07-R9FNDIS (via Conversion Cable L9769, NDIS connector PRC03-12A10-7M10.5) Max. rated voltage to ground: 30 V rms or 60 V DC (with input isolated from the unit, the maximum voltage that can be applied between input channel and chassis and between input channels without damage)
Suitable transducer	Strain gauge converter, Bridge impedance: 120Ω to $1 \mathrm{k} \Omega$, Bridge voltage: $2 \mathrm{~V} \pm 0.05 \mathrm{~V}$, Gauge rate: 2.0
Measurement range	$20 \mu \varepsilon$ to 1000μ z/div, 6 ranges, full scale: 20 div, Low-pass filter: $5 / 10 / 100 \mathrm{~Hz}, 1 \mathrm{kHz}$
Measurement resolution	1/1250 of measurement range (using 16-bit A / D conversion)
Maximum sampling rate	$200 \mathrm{kS} / \mathrm{s}$ (simultaneous sampling across 2 channels)
Measurement accuracy After auto-balancing	$\pm 0.5 \%$ f.s. $\pm 4 \mu \varepsilon(5 \mathrm{~Hz}$ filter ON$)$
Frequency characteristics	DC to $20 \mathrm{kHz}+1 /-3 \mathrm{~dB}$

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ (0.78 in) $\mathrm{H} \times 196.5 \mathrm{~mm}$ (7.74 in) D, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$
Accessories: None

FREQ UNIT 8970	(Accuracy at $23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F}, 20$ to 80% rh after 30 minutes of warm-up time; Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)
Measurement functions	Number of channels: 2, for voltage input based frequency measurement, rotation, power frequency, integration, pulse duty ratio, pulse width
Input terminals	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to ground: 300 V AC or DC (with input isolated from the main unit, the maximum voltage that can be applied between input channel and chassis, and between input channels without damage)
Frequency mode	Range: Between DC to 100 kHz (minimum pulse width $2 \mu \mathrm{~s}$), $1 \mathrm{~Hz} / \mathrm{div}$ to $5 \mathrm{kHz} / \mathrm{div}$ (full scale $=20$ div), 8 settings Accuracy: $\pm 0.1 \%$ f.s. (exclude $5 \mathrm{kHz} /$ div), $\pm 0.7 \%$ f.s. (at $5 \mathrm{kHz} /$ div)
Rotation mode	Range: Between 0 to 2 million rotations/minute (minimum pulse width $2 \mu \mathrm{~s}$), $100(\mathrm{r} / \mathrm{min}) /$ div to $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div (full scale $=20 \mathrm{div}), 7$ settings Accuracy: $\pm 0.1 \%$ f.s. (excluding $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div), $\pm 0.7 \%$ f.s. (at $100 \mathrm{k}(\mathrm{r} / \mathrm{min}) /$ div)
Power frequency mode	Range: $50 \mathrm{~Hz}(40$ to 60 Hz), $60 \mathrm{~Hz}(50$ to 70 Hz), $400 \mathrm{~Hz}(390$ to 410 Hz) (full scale $=$ 20 div), 3 settings Accuracy: $\pm 0.03 \mathrm{~Hz}$ ($50,60 \mathrm{~Hz}$), $\pm 0.1 \mathrm{~Hz}$ (400 Hz range)
Integration mode	Range: 2 k counts/div to 1 M counts/div, 6 settings Accuracy: \pm range/2000
Duty ratio mode	Range: Between 10 Hz to 100 kHz (minimum pulse width $2 \mu \mathrm{~s}$), $5 \% /$ div (full scale $=$ 20 div) Accuracy: $\pm 1 \%$ (10 Hz to 10 kHz), $\pm 4 \%$ (10 kHz to 100 kHz)
Pulse width mode	Range: Between $2 \mu \mathrm{~s}$ to $2 \mathrm{sec}, 500 \mu \mathrm{~s} /$ div to $100 \mathrm{~ms} /$ dvv (full scale $=20$ div), Accuracy: $\pm 0.1 \%$ f.s.
Measurement resolution	$1 / 2000$ of range (Integration mode), $1 / 500$ of range (exclude integration, power frequency mode), $1 / 100$ of range (power frequency mode)
Input voltage range and threshold level	$\pm 10 \mathrm{~V}$ to $\pm 400 \mathrm{~V}, 6$ settings, selectable threshold level at each range
Other functions	Slope, Level, Hold, Smoothing, Low-pass filter, Switchable DC/AC input coupling, Frequency dividing, Integration over-range keep/return

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}(0.78 \mathrm{in})$ $\mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$ Accessories: CONVERSION CABLE 9318×2
(To connect the current sensor to the 8971)

CURRENT UNIT $8971 \quad \begin{aligned} & \text { (Accuracy at } 23 \pm 5^{\circ} \mathrm{C} / 73 \pm 9^{\circ} \mathrm{F} \text {, } 20 \text { to } 880 \% \text { th after } 30 \text { minutes of warm-up time and zero } \\ & \text { adjustment; Accuracy guaranteed for } 1 \text { year, Post-adjustment accuracy guaranted for } 1 \text { year) }\end{aligned}$

Measurement functions
Input terminals
Compatible current sen sors

Measurement range

Measurement accuracy
(with 5 Hz filter ON)
Note: Add the accuracy and attri-
butes of the current sensor being
used.
Measurement resolution
Maximum sampling rate

Other functions	Input coupling: AC/DC/GND, Low-pass filter: $5,50,500,5 \mathrm{k}, 50 \mathrm{kHz}$

Dimensions and mass: approx. 106 mm (4.17 in) $\mathrm{W} \times 19.8 \mathrm{~mm}$
$(0.78 \mathrm{in}) \mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$
(0.78 in) H $\times 196.5 \mathrm{~m}$
Accessories: None

DC/RMS UNIT 8972	72 (Accuracy at $23 \pm 5^{\circ} \mathrm{C} 773 \pm 9^{\circ} \mathrm{F}$, 20 to 80% rh after 30 minutes of warm-up time and zero
Measurement functions	Number of channels: 2 , for voltage measurement, DC/RMS selectable
Input terminals	Isolated BNC connector (input impedance $1 \mathrm{M} \Omega$, input capacitance 30 pF), Max. rated voltage to ground: 300 V AC or DC (with input isolated from the main unit, the maximum voltage that can be applied between input channel and chassis, and between input channels without damage)
Measurement range	5 mV to $20 \mathrm{~V} / \mathrm{div}$, 12 ranges, full scale: 20 div, AC voltage for possible measurement/ display using the memory function: 280 V rms, Low-pass filter: $5 / 50 / 500 \mathrm{~Hz}, 5 \mathrm{k} / 100 \mathrm{kHz}$
Measurement resolution	1/100 of range (using 12-bit A/D conversion)
Maximum sampling rate	$1 \mathrm{MS} / \mathrm{s}$ (simultaneous sampling in 2 channels)
Measurement accuracy	$\pm 0.5 \%$ of full scale (with filter 5 Hz , zero position accuracy included)
RMS measurement	RMS amplitude accuracy: $\pm 1 \%$ f.s. (DC, 30 Hz to 1 kHz), $\pm 3 \%$ of full scale (1 kHz to 100 kHz) Response time: SLOW 5 s (rise time from 0 to 90% of full scale), MID 800 ms (rise time from 0 to 90% of full scale), FAST 100 ms (rise time from 0 to 90% of full scale), Crest factor: 2
Frequency characteristics	DC to $400 \mathrm{kHz}-3 \mathrm{~dB}$, (with AC coupling: 7 Hz to $400 \mathrm{kHz}-3 \mathrm{~dB}$)
Input coupling	AC/DC/GND
Maximum input voltage	400 V DC (maximum voltage that can be applied between input connectors without damage)

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ (0.78 in) $\mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $190 \mathrm{~g}(6.7 \mathrm{oz})$
Accessories: None

LOGIC UNIT 8973

Measurement functions \quad Number of channels: 16 channels ($4 \mathrm{ch} / 1$ probe connector $\times 4$ connectors)
Input terminals
umber of channels: 2, Current measurement with optional current sensor, Sensor connector (input impedance $1 \mathrm{M} \Omega$, exclusive connector for current sensor via conversion cable the 9318 , common GND with recorder) CT6863, CT6862, 9709, CT6841, CT6843, CT6844, CT6845, 9272-10 (To connect the 8971 via conversion cable the 9318)
Using 9272-10 (20 A), CT6841: 100 mA to $5 \mathrm{~A} /$ div (f.s. $=20$ div, 6 settings) Using CT6862: 200 mA to $10 \mathrm{~A} /$ div (f.s. $=20$ div, 6 settings) Using 9272-10 $(200 \mathrm{~A}), \mathrm{CT} 6843$, CT6863: 1 A to $50 \mathrm{~A} /$ div (f.s. $=20 \mathrm{div}, 6$ settings) Using CT6844, CT6845, 9709 : 2 A to $100 \mathrm{~A} /$ div (f.s. $=20$ div, 6 settings) $\pm 0.65 \%$ f.s.
RMS amplitude accuracy: $\pm 1 \%$ f.s. (DC, 30 Hz to 1 kHz), $\pm 3 \%$ f.s. $(1 \mathrm{kHz}$ to 10 kHz$)$ RMS response time: 100 ms (rise time from 0 to 90% of full scale),
Crest factor: 2
Frequency characteristics: DC to $100 \mathrm{kHz}, \pm 3 \mathrm{~dB}$ (with AC coupling: 7 Hz to 100 kHz)

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ (0.78 in) $\mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $260 \mathrm{~g}(9.2 \mathrm{oz})$
Accessories: None

DIGITAL VOLTMETER UNIT MR8990	ER UNIT MR8990 Accuracy guaranted for 1 year, Postadiusment accuracy guaranteed for y year)
Measurement functions	Number of channels: 2, for DC voltage measurement
Input terminals	Banana input connectors (Input resistance: $100 \mathrm{M} \Omega$ or higher with 100 mV f.s. to 10 V f.s. range, otherwise $10 \mathrm{M} \Omega$) Max. rated voltage to ground: 300 V AC or DC (with input isolated from the main unit, the maximum voltage that can be applied between input channel and chassis, and between input channels without damage)
Measurement range	100 mV f.s. ($5 \mathrm{mV} /$ div) to 1000 V f.s. ($50 \mathrm{~V} /$ div), 5 ranges, full scale: 20 div
Measurement resolution	$1 / 50000$ of measurement range (using 24 bit $\Delta \Sigma$ modulation A/D)
Integration time	$20 \mathrm{~ms} \times$ NPLC (during 50 Hz), $16.67 \mathrm{~ms} \times$ NPLC (during 60 Hz)
Response time	$2 \mathrm{~ms}+2 \times$ integration time or less (rise - f.s. $\rightarrow+$ f.s., fall + f.s. \rightarrow - f.s.)
Basic measurement accuracy	$\pm 0.01 \%$ rdg. $\pm 0.0025 \%$ f.s. (at range of 1000 mV f.s.)
Maximum input voltage	500 V DC (maximum voltage that can be applied between input connectors without damage)

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$
(0.78 in) $\mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. 230 g (8.1 oz)
Accessories: None

HIGH-VOLTAGE	NIT U8974 (Accuracy at $23 \pm 5^{\circ} \mathrm{C} 773 \pm 9^{\circ} \mathrm{F}, 20$ to $80 \% \mathrm{~m}$ atter 30 minutes of varm-up time and zero adjustment; Accuracy guaranteed for 1 year, Postradjustment accuracy guaranteed for 1 year)
Measurement functions	Number of channels: 2, for voltage measurement, DC/RMS selectable Maximum rated voltage to ground: 1000 V AC or DC (CAT III), 600 V AC or DC (CAT IV)
Input terminals	Banana input terminal (Input impedance: $4 \mathrm{M} \Omega$, Input capacitance: 5 pF)
Measurement range	$200 \mathrm{mV}, 500 \mathrm{mV}, 1,2,5,10,20,50 \mathrm{~V} / \mathrm{div}$ (DC mode) $500 \mathrm{mV}, 1,2,5,10,20,50 \mathrm{~V} / \mathrm{div}$ (RMS mode)
Measurement resolution	1/1600 of measurement range (using 16-bit A/D conversion)
Maximum sampling rate	$1 \mathrm{MS} / \mathrm{s}$
Measurement accuracy	$\pm 0.25 \%$ f.s. (with filter 5 Hz , zero position accuracy included)
RMS measurement	RMS accuracy: $\pm 1.5 \%$ f.s. (DC, 30 Hz to 1 kHz), $\pm 3 \%$ f.s. (1 kHz to 100 kHz) Response time: High speed 150 ms , Medium speed 500 ms , Low speed 2.5 s
Frequency characteristics	DC to $100 \mathrm{kHz}-3 \mathrm{~dB}$
Input coupling	DC / GND
Maximum input voltage	1000 V DC, 700 V AC
Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ (0.78 in) H $\times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $250 \mathrm{~g}(8.8 \mathrm{oz})$ Accessories: None	
ARBITRARY WAVEFORM GENERATOR UNIT U8793	ORM GENERATOR UNIT U8793 Accuracy guaranteed for 1 year, Post-adjustment accuracy guaranteed for 1 year)
Output terminal	Number of channels: 2, SMB terminal (Output impedance: 1Ω or less) Max. rated voltage to ground: 33 V rms AC or 70 V DC
Output voltage range	-10 V to 15 V (Amplitude setting range: 0 V to 20 V p-p, Setting resolution: 1 mV)
Max. output current	10 mA (Allowable load resistance: $1.5 \mathrm{k} \Omega$ or more)
FG function	DC, Sine wave, Square wave, Pulse wave, Triangular wave, Ramp wave, Output frequency: 0 Hz to 100 kHz
Arbitrary waveform generator mode	Waveforms measured by MR8847A, etc., generated by Hioki Model 7075 or SF8000, CSV waveforms D/A refresh rate: 2 MHz (using 16-bit D/A)
Sweep function	Frequency, Amplitude, Offset, Duty (Pulse only)
Program function	Max. 128 steps (Number of loops for each step, Number of total loops)
Other	Self-test function (Voltage), External input/output control

Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ $(0.78 \mathrm{in}) \mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $230 \mathrm{~g}(8.1 \mathrm{oz})$
Accessories: None

Output terminal	Number of channels: 4, SMB terminal (Output impedance: 1Ω or less) Max. rated voltage to ground: 33 V rms AC or 70 V DC
Output voltage range	-10 V to 10 V (Amplitude setting range: 0 V to 20 V p-p, Setting resolution: 1 mV)
Max. output current	5 mA
Output function	DC, Sine wave (Output frequency range: 0 Hz to 20 kHz)
Accuracy	Amplitude accuracy: $\pm 0.25 \%$ of setting $\pm 2 \mathrm{mV}$ p-p (1 Hz to 10 kHz) Offset accuracy: $\pm 3 \mathrm{mV}$ DC output accuracy: $\pm 0.6 \mathrm{mV}$
Other	Self-test function (Voltage, Current)
Dimensions and mass: approx. $106 \mathrm{~mm}(4.17 \mathrm{in}) \mathrm{W} \times 19.8 \mathrm{~mm}$ $(0.78 \mathrm{in}) \mathrm{H} \times 196.5 \mathrm{~mm}(7.74 \mathrm{in}) \mathrm{D}$, approx. $230 \mathrm{~g}(8.1 \mathrm{oz})$ Accessories: None	
PULSE GENERATOR UNIT MR8791	
Output terminal	Number of channels: 8, Connector: D-sub, half-pitch, 50 -pin Max. rated voltage to ground: 33 Vrms AC or 70 V DC (between unit and output channels) Logic output/Open collector output
Output mode 1	Pattern output: Read frequency: 0 Hz to $120 \mathrm{kHz}, 2048$ logic patterns
	Pulse output: Frequency 0 Hz to 20 kHz , Duty 0.1% to 99.9%
Output mode 2	Logic output: Output voltage level: 0 V to 5 V (H level: 3.8 V or more, L level: 0.8 V or less)
	Open collector output: Absolute maximum rated voltage for collector/emitter: 50 V Overcurrent protection: 100 mA
Other	Self-test function

Cable length and mass: Input side: $70 \mathrm{~cm}(2.30 \mathrm{ft})$, Output side: 1.5 m (4.92 ft), Approx. 170 g (6.0 oz)

DIFFERENTIAL PROBE P9000	$\begin{array}{ll} \text { BE P9000 } & \begin{array}{l} \text { (Accuracy guaranteed for } 1 \text { year, } \\ \text { Post-adustment accuracy guaranteed for } 1 \text { year) } \end{array} \end{array}$
Measurement modes	P9000-01: For waveform monitor output, Frequency characteristics: DC to $100 \mathrm{kHz}-3 \mathrm{~dB}$ P9000-02: Switches between waveform monitor output/AC effective value output Wave mode frequency characteristics: DC to $100 \mathrm{kHz}-3 \mathrm{~dB}$, RMS mode frequency characteristics: 30 Hz to 10 kHz , Response time: Rise 300 ms , Fall 600 ms
Division ratio	Switches between 1000:1, 100:1
DC output accuracy	$\pm 0.5 \%$ f.s. (f.s. $=1.0 \mathrm{~V}$, division ratio $1000: 1$), (f.s. $=3.5 \mathrm{~V}$, division ratio $100: 1$)
Effective value measurement accuracy	$\pm 1 \%$ f.s. (30 Hz to less than 1 kHz , sine wave), $\pm 3 \%$ f.s. (1 kHz to 10 kHz , sine wave)
Input resistance/capacity	H-L: $10.5 \mathrm{M} \Omega, 5 \mathrm{pF}$ or less (At 100 kHz)
Maximum input voltage	$1000 \mathrm{~V} \mathrm{AC}, \mathrm{DC}$
Maximum rated voltage to ground	1000 V AC, DC (CAT III)
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$
Power supply	(1) AC adapter Z1008 (100 to $240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$), 6 VA (including AC adapter), 0.9 VA (main unit only) (2) USB bus power (5 V DC, USB micro-B connector), 0.8 VA (3) External power source 2.7 V to 15 V DC, 1 VA
Accessories	Instruction manual $\times 1$, Alligator clip $\times 2$, Carrying case $\times 1$

Cable length and mass: Main unit cable $1.3 \mathrm{~m}(4.27 \mathrm{ft})$, input section

DIFFERENTIAL PROBE 9322 (Accuracy guaranteed fo	
Functions	For high-voltage floating measurement, power line surge noise detection, RMS rectified output measurement
DC mode	For waveform monitor output, Frequency characteristics: DC to $10 \mathrm{MHz}(\pm 3 \mathrm{~dB})$, Amplitude accuracy: $\pm 1 \%$ of full scale (at max. 1000 V DC), $\pm 3 \%$ of full scale (at max. 2000 V DC) (full scale: 2000 V DC)
AC mode	For detection of power line surge noise, Frequency characteristics: 1 kHz to $10 \mathrm{MHz} \pm 3 \mathrm{~dB}$
RMS mode	DC/AC voltage RMS output detection, Frequency characteristics: DC, 40 Hz to 100 kHz , Response speed: 200 ms or less (400 V AC), Accuracy: $\pm 1 \%$ of full scale (DC, 40 Hz to 1 kHz), $\pm 4 \%$ of full scale (1 kHz to 100 kHz) (full scale: 1000 V AC)
Input	Input type: balanced differential input, Input impedance/capacitance: $\mathrm{H}-\mathrm{L} 9 \mathrm{M} \Omega / 10 \mathrm{pF}, \mathrm{H} /$ L-unit $4.5 \mathrm{M} \Omega / 20 \mathrm{pF}$, Max. rated voltage to ground: when using grabber clip 1500 V AC/DC (CAT II), 600 V AC/DC (CAT III), when using alligator clip: $1000 \mathrm{~V} \mathrm{AC/DC}$ (CAT II), $600 \mathrm{~V} \mathrm{AC/DC}$ (CAT III)
Maximum input voltage	2000 V DC, 1000 V AC (CAT II), 600 V AC/DC (CAT III)
Output	Voltage divider for 1/1000 of input, BNC connectors (output switchable for 3 modes DC, AC, RMS)
Power supply	Any of the following: (1) AC Adapte 9418-15, (2) Power Cord 9248 with Probe Power Unit 9687, (3) Power Cord 9324 + Conversion Cable 9323 with HiCORDER logic terminal, (4) Power Cord 9325 with F/V Unit 8940

Cable length and mass: Main unit cable $1.5 \mathrm{~m}(4.92 \mathrm{ft})$, input section cable $30 \mathrm{~cm}(0.98 \mathrm{ft}$), approx. 150 g (5.3 oz)
Note: The unit-side plug of the 9320-01 and 9327 is different from the 932

LOGIC PROBE 9320-01/9327

Functions

Input

Digital input threshold
Contact input detection resistance
Detectable pulse width
Maximum input voltage

Detection of voltage signal or relay contact signal for High/Low state recording 4 channels (common ground between unit and channels), digital/contact input, switchable (contact input can detect open-collector signals) Input resistance: $1 \mathrm{M} \Omega$ (with digital input, 0 to +5 V) $500 \mathrm{k} \Omega$ or more (with digital input, +5 to +50 V) Pull-up resistance: $2 \mathrm{k} \Omega$ (contact input: internally pulled up to +5 V) $1.4 \mathrm{~V} / 2.5 \mathrm{~V} / 4.0 \mathrm{~V}$
$1.4 \mathrm{~V}: 1.5 \mathrm{k} \Omega$ or higher (open) and 500Ω or lower (short) $2.5 \mathrm{~V}: 3.5 \mathrm{k} \Omega$ or higher (open) and $1.5 \mathrm{k} \Omega$ or lower (short)
$4.0 \mathrm{~V}: 25 \mathrm{k} \Omega$ or higher (open) and $8 \mathrm{k} \Omega$ or lower (short)
9320-01: 500 ns or longer, 9327 : 100 ns or longer
0 to +50 V DC (the maximum voltage that can be applied across input pins without damage)

Cable length and mass: Main unit cable $1.5 \mathrm{~m}(4.92 \mathrm{ft})$, input section cable 1 m (3.28 ft), approx. 320 g (11.3 oz)
Note: The unit-side plug of the MR9321-01 is different from the MR9321.

LOGIC PROBE MR9321-01

Functions
Input
Output (H) detection
Output (L) detection
Response time
Maximum input voltage

Detection of AC or DC relay drive signal for High/Low state recording Can also be used for power line interruption detection
4 channels (isolated between unit and channels), HIGH/LOW range switching Input resistance: $100 \mathrm{k} \Omega$ or higher (HIGH range), $30 \mathrm{k} \Omega$ or higher (LOW range) 170 to $250 \mathrm{~V} \mathrm{AC}, \pm$ DC 70 to 250 V (HIGH range) 60 to $150 \mathrm{~V} \mathrm{AC}, \pm$ DC 20 to 150 V (LOW range) 0 to 30 V AC, \pm DC 0 to 43 V (HIGH range) 0 to $10 \mathrm{~V} \mathrm{AC}, \pm \mathrm{DC} 0$ to 15 V (LOW range)
Rising edge 1 ms max., falling edge 3 ms max. (with HIGH range at 200 V DC, LOW range at 100 V DC)
250 V rms (HIGH range), 150 V rms (LOW range) (the maximum voltage that can be applied across input pins without damage)

System Chart of Options

INPUT CORD (C)	* This probe does not expand the maximum rated voltage above ground of an isolated input.
	10:1 PROBE 9665 Max. rated voltage to earth is same as for input module, max. input voltage 1 kV rms (up to 500 kHz$), 1.5 \mathrm{~m}(4.92 \mathrm{ft})$ length
	10:1 PROBE 9666 Max. rated voltage to earth is same as for input module, max. input voltage 5 kV peak (up to 1 MHz$), 1.5 \mathrm{~m}(4.92 \mathrm{ft})$ length

INPUT CORD (D)	*Voltage to ground is within this product's specifications, separate power source is also required.
	DIFFERENTIAL PROBE P9000-01 (Wave Only) For Memory HiCorder, $1 \mathrm{kV} \mathrm{AC}, \mathrm{DC} ,\mathrm{Frequency} \mathrm{band:} 100 \mathrm{kHz}$ DIFFERENTIAL PROBE P9000-02 (Switch between Wave/RMS) For Memory HiCorder, 1 kV AC, DC, Frequency band: 100 kHz AC ADAPTER Z1008 100 to 240 V AC

NON-NON-CONTACT AC VOLTAGE PROBE SP3000-01 5 V rms rated, 10 Hz to 100 kHz band width NON-CONTACT AC VOLTAGE PROBE SP3000 Sold individually
Custom cable $\begin{aligned} & \text { "For P9000. Inquire with your } \\ & \text { local Hioki distributor. }\end{aligned}$
(1) Bus powered USB cable
(2) USB(A)- Micro B cable
(3) 3 -prong cable

Generate and record in a single unit

Anomaly Simulation

Reproduce and output the observed waveforms without modification. When resolving problems observed during research or development, you can reproduce such problems for efficient testing.

Recommended units

 GENERATOR UNIT U8793

ANALOG UNIT 8966

Record anomalous waveforms

Max. 15 V output + amplifier
Reproduce and output anomalous waveforms

- Create power supply waveforms such as power supply dips, instantaneous interruptions, and voltage fluctuations for immunity tests to regulate malfunctions in equipment caused by power supply harmonics to perform evaluation testing

Replace multiple DMMs with a single unit

Save space by replacing multiple desktop DMM units with a single MEMORY HiCORDER.
This eliminates the need to control multiple units and simplifies your system.

2 channels, banana input terminal High precision, high resolution
 expand up to 32 channels

DIGITAL VOLTMETER UNIT MR8990

Fine precision and resolution

Proprietary specifications for DC voltage measurements
Measure minute fluctuations in sensor output for automobiles or voltage fluctuations in batteries with high precision and at high resolution. The maximum voltage that you can input is 500 V DC. Another feature is high input resistance.

Measurement range		Effective input range (Guaranteed measurement accuracy range)	Max. resolution	Input resistance	Measurement accuracy		
		NPLC: less than 1			NPLC: 1 or more		
$5 \mathrm{mV} / \mathrm{div}$	(f.s. $=100 \mathrm{mV}$)		-120 mV to 120 mV	$0.1 \mu \mathrm{~V}$	$100 \mathrm{M} \Omega$ or more	$\pm 0.01 \%$ rdg. $\pm 0.015 \%$ f.s.	$\pm 0.01 \% \mathrm{rdg} .$ $\pm 0.01 \% \text { f.s. }$
$50 \mathrm{mV} / \mathrm{div}$	(f.s. $=1000 \mathrm{mV}$)	-1200 mV to 1200 mV	$1 \mu \mathrm{~V}$	$\begin{gathered} \pm 0.01 \% \text { rdg. } \\ \pm 0.0025 \% \text { f.s. } \end{gathered}$			
$500 \mathrm{mV} / \mathrm{div}$	(f.s. $=10 \mathrm{~V}$)	-12 V to 12 V	$10 \mu \mathrm{~V}$				
5 V /div	(f.s. $=100 \mathrm{~V}$)	-120 V to 120 V	$100 \mu \mathrm{~V}$	$\begin{gathered} 10 \mathrm{M} \Omega \\ \pm 5 \% \end{gathered}$		$\begin{aligned} & \pm 0.025 \% \text { rdg. } \\ & \pm 0.0025 \% \text { f.s. } \end{aligned}$	
$50 \mathrm{~V} / \mathrm{div}$	(f.s. $=1000 \mathrm{~V}$)	-500 V to 500 V	1 mV				

6.5-digit display (Resolution: $0.1 \mu \mathrm{~V}$), 24-bit high resolution

