

E36731A Battery emulator and profiler

Your Complete Battery Emulation Solution

Keysight's E36731A Battery Emulator with BV9211B PathWave BenchVue advanced battery emulation software solution provides a test environment for you to run battery tests and perform battery emulation with ease. You can perform charge, discharge of a battery, and use it to automatically create battery profiles at various test conditions, which you can then use to emulate the different states of charge (SoC) of your device under test (DUT). Additionally, the easy-to-use battery cycler lets you monitor battery aging and stability. The E36731A plus the BV9211B is a complete battery emulation solution, allowing you to test, emulate, and automate in a compact bench form factor.

Quickly Optimize Your Device for Better Battery Life with BV9211B Advanced Battery Emulation Software

The E36731A is designed to operate with Keysight BV9211B Pathwave BenchVue Advanced Battery Emulation software. This software allows you to easily profile and generate battery models with or without temperature monitoring and perform battery emulation on the bench.

Generating a battery profile ensures you get the most accurate models for emulating your device's battery in various operating scenarios. The E36731A plus BV9211B solution creates a battery profile by discharging or charging a physical battery with either a static current condition or a previously created dynamic loading profile.

For battery emulation, you can load the software-generated profiles or import the previously created external battery models. For simplicity, you will only need to enter these four parameters to emulate a battery: capacity rating, current limit, initial SoC, and cut-off condition.

You can also create a custom sequence of charging, resting, and discharging a battery at various test conditions. The application allows up to one thousand cycle operations on the battery to determine the battery's aging effect and reliability under sequence test conditions. All of these enable you to quickly optimize your device for better battery life.

BV9211B PathWave BenchVue Advanced Battery Test and Emulation Software

The Keysight E36731A works with the BV9211B Pathwave BenchVue Advanced Battery Test and Emulation software to run battery tests, generate battery models, and perform battery emulation. The emulation function allows you to quickly change and output the desired battery operating conditions to cover various test scenarios without having to wait for an actual battery to go through discharging or charging conditions.

Key features:

- Tests and emulates batteries up to 200kW and up to 2000V (depending on the instrument models)
- Supports four modes of operation: emulation, profiler, discharge/charge, and cycler
- Creates custom battery models
- Controls up to four instruments at a time
- Includes API functions to facilitate integration into your programming environment
- Provides advanced control capabilities capacity rating, state of charge, constant or dynamic level selection, pulse width control

- Measures voltage and current simultaneously with its built-in digitizer
- Captures voltage, current, and capacity accurately from seconds up to days
- Creates custom dynamic loading characteristics for discharging
- Imports battery models
- Exports measurement data
- Provides a graphical view of the battery model
- Provides customizable battery protection parameters

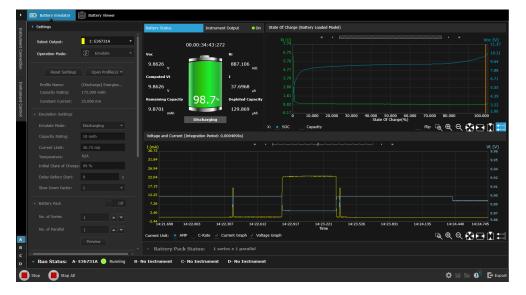


Figure 1. BV9210B PathWave BenchVue Advanced Battery Test and Emulation Software

Profiler - create battery models tailored around device behavior

A battery profiler is a must-have tool if you are working with different batteries or if you need to create your own custom battery model library. A battery profiler ensures you get the most accurate models for battery life predictions tailored to your devices and working scenarios.

The BV9211B software enables you to create custom battery models when charging or discharging a physical battery. You can efficiently perform battery discharging with a static or dynamic current loading profile, constant resistance, or power. Furthermore, the BV9210B can generate a battery model profile of up to 200 points. Each point includes the open circuit voltage (Voc), series resistance (Ri), and state of charge (SoC). The software will automatically build up the battery model until it meets the stopping condition. While discharging or charging a battery, the software continuously captures parameters like Voc, Vt, Ri, Current, Time, Capacity, SoC, and Temperature in real-time. The profiler also can export all graphed data while the test is running for further analysis.

Settings		Battery Status	Voltage and Current (Integration Period: 0.0004096s)
			1 (mA) · · · · · · · · · · · · · · · · · · ·
		00.00:36:32:898	
		3.7404 y 9	70.144 me 6.67
			9.9995 nx -11.33
		v 30.3 _% ch	erged Capacity -20.00
	\Battery	27.8919	2.1081 -76.67 nute -78.67 nute -78.67 12:39 15:02 17:26 19:49 27:12 24:36 26:59 29:23 31:46 34:09 36:33 Time
			Current Unit: AMP C.Rate Current Graph Voltage Graph C Rate Current Graph Voltage Graph C Rate Current Graph C Rate Current Graph C Rate C
			404 9.355 12.307 15.258 18.209 21.161 24.112 27.063 30.015 State Of Charge(%)
	Stopping Current •	- X: SOC Capacity	ाम्म 🛱 🔍 🔍 🔁 🖬
- Run Status: A-	N6705C 😑 Running B-	N6701C Stopped C- No Instrume	nt D- No Instrument

Figure 2. Creating a battery model with static profiler function.

Figure 3. Creating a battery model with dynamic profiler function.

		Battery Status	Voltage and Current (Integration Period: 0.0006144s)
	Profiler •		1(A) 305
	🚯 Discharge 🔹	00.01:50:22:370	2.95
New Profile	Lood Protile	1.0252 v 12.4779 min	
Profile Settings File Name:	NIMIT MIT-C5000 Cons	948.479 mV Remaining Capacity 13.5	1.1 2.0% 3.0%
Folder Location: No. of steps:	\Battery	675.800 4.3242 A	-4.05 0.8 11:02 22:04 33:06 44:09 55:11 01:06:13 01:28:18 01:50:22 Time
	200 • •		🛛 Current Unit: 💿 AMP 🔿 C-Rate 🔽 Current Graph 🗹 Voltage Graph 🛛 🗟 🤤 🤤 🚺
 Discharge Settings 		State Of Charge	
	Primary Rechargeable		
Ambient Temperature Discharge Mode:	: 26 •C •		
	er 🕘 Resistance		
Constant Power:	2.9 W	1.09 V V V V V V V V V V V V V V V V V V V	
Capacity Rating:	5 Ah		4.200 65.600 57.000 48.400 39.799 31.199 22.599 13.999
Battery Voltage	1.428 V Measure	x: 💽 SOC 💦 Capacity	State Of Charge(%)
A Run Status: A-	N6705C Stopped B- I	vo Instrument C- No Instrument D- No Instr	ument

Figure 4. Creating a battery profiler with ambient temperature and constant power discharge features.

Emulation – battery emulation reduces test time

Battery emulation is a critical process, allowing you to quickly understand your device's current drain in real-life scenarios at different charge levels. Using a battery emulator instead of an actual battery has many advantages. A battery emulator helps create a safer test environment and allows the validation of the device's various operational modes.

To emulate battery characteristics, start by loading a battery model into BV9211B Advanced Battery Test and Emulation software. The software algorithm will follow the battery model in real time and emulate the battery behavior. The software supports two types of battery models - profiles generated by the software or external battery models with Voc, SoC, and Ri parameters in a CSV file. For simplicity, you will only need to enter four parameters to emulate a battery – capacity rating, current limit, initial SoC, and a cut-off condition. While emulating a battery, the software simultaneously measures voltage and current continuously and saves the measurement results. The software allows you to instantly change the charge of the battery. Also, you can load multiple battery models created at different temperatures.

Figure 5. BV9210B Emulating Lithium battery powering a low-power device.

Settings	Battery Status Instrument Output • On State Of Charge (Battery Loaded Model)	
Select Output: 1: N6781A *	00.00:06:59:324 Voc (V) 4.39	
Operation Mode: 😨 Emulate 🔹	Vxc Ni 4.19 3.6210 V 81.1365 00	
	Computed Vt 1 3.79 3.5397 1.0028 3.39	
No Profile Ratings NCR186508-14C- Completed.csv 14.000 °C	48.5 Depleted Capacity 2.99	
	Ah 100.000 80.000 70.000 60.000 50.000 30.000 20.000 10.0 Discharging	00 0
	x: e soc 🖉 capacity 🗹 rito 🛱 🔍 🤤	
	Voltage and Current (Integration Period: 0.00032768s)	
	1(A) · · · · · · · · · · · · · · · · · · ·	Vt (
		3.6
		3.6
		3.5
		educador 3.5
	0.21	3.5
		3.5
Initial State of Charge: 50 %	0.18 06:39.521 06:41.321 06:43.321 06:45.321 06:45.321 06:47.323 06:47.323 06:51.321 06:53.321 06:55.321 06:57.321 Time	
and save or charge, 50 %	👻 Current Unit: 💿 AMP 🔿 C-Rate 🔽 Current Graph 🗹 Voltage Graph 🤤 🖓 🙀 🔍 🕅	320
- Run Status: A- N6705C O Running B	No Instrument C- No Instrument D- No Instrument	

Figure 6. BV9210B Emulating multiple battery models at different temperatures.

Cycler – life cycling battery characteristics

The cycling function lets you create a custom sequence of charging, resting, and discharging a battery at various test conditions. The software enables you to make up to one thousand cycle operations on the battery to determine the effect of battery aging and the battery's reliability under sequenced test conditions. While performing these sequences, the software monitors the battery's health and records test data parameters of capacity, terminal voltage, current, and time. The cut-off condition features allow you to define a stop condition where cycling will automatically stop once the capacity loss percentage is reached.

1 (A) VI 123					** *	h			• ••			
							11 -					
					1							
	01 d.01				1 d.04 Voltage Grap	01 d.05 h 🗸 Capacity Grap	01 d.06 Time				ः स. ११ बि. स. स. स.	
	01 d.01 nit: 💽 AMP											
Current U	01 d.01 nit: 💽 AMP											
Current U	o1 d.01 nit: AMP	C-Rate Cycle 1 1.455Ab	Cycle Line Cycle 2 2.026Mb	Current Graph Cycle 3 2.027Ab	Voltage Grap	h Capacity Grap Cycle 5 2.018Ah						
Current U Batter Step	01 d.01 nit: AMP ry Cycle Operation	C-Rate Cycle 1 1.455/h 01:33:24.521 789.000/h	Cycle Line Cycle 2 2.026Ah 02:07:38.973 585.000n/h	Current Graph Cycle 3 2.027Ah 02:06:59.617 595.000nAh	 Voltage Grap Cycle 4 2.022/hi 02:07:03.805 814.000n/hi 	Cycle 5 2.018Ah 02:07:13.327 635.000Ah						
Current U Batter Step 1	os d.os nit: AMP ny Cycle Operation Charge	C-Rate	Cycle Line Cycle 2 2.026Ab 02:07:38.973 585.000eAb 00:05:00.007 2.025Ab	Current Graph Cycle 3 2.027Ab 02:06-59, 617 595.000nAb 00:05-00, 012 2.023Ab	 Voltage Grap Cycle 4 2.022Ah 02:07:03.805 \$14.000Ah 00:05:00.00h 2.019Ah 	Cycle 5 2.018Ah 02:07:13.327 635.000Ah 00:05:00.023 2.018Ah						
Current U Battes Step 1 2	os d.os nit: AMP ny Cycle Operation Charge Rest	C-Rote Cycle 1 1.455/h 01-33:24.521 7580.000m/h 00-05:00.012 2.025/h 00:03:40.443 113.961µ/h	Cycle Line Cycle 2 2.026Ah 02:07:38.973 585.000nAh 00:00:500 2.025Ah 05:03:48.340 114.243.µdh	Current Graph Cycle 3 2.027Ab 02:06:59.617 695.000nMt 00:05:00.010 00:05:00.310.930 113.843uAh	Voltage Grap Cycle 4 2.022Ah 02:07:03.805 814.060Ah 00:05:20.801 2.019Ah 05:02:23.810 113.524uAh	Cycle 5 2.018Ah 02:07:13.327 635.000nAh 00:05:00.023 2.018Ah 05:02:49.027 113.852UAh						
Current U Batter Step 1 2 3	o1 d.01 nit: AMP ry Cycle Operation Charge Rest Discharge	C-Rate Cycle 1 1.455Ah 01:33:24.521 789.000Ah 00:05:00.012 2.025Ah 00:03:40.443	Cycle Line Cycle 2 2.026Ab 02:07:38.973 585.0060Ab 00:05:00.007 2.025Ab 05:03:45.540	Current Graph Cycle 3 2.027Ab 02:06-59.617 595.0000Ab 00:05:00.012 2.023Ab 05:03:10.930	Voltage Grap Cycle 4 2.022Ah 02:07:03.805 514.000Ah 00:05:00.001 2.019Ah 05:02:53.819	t ✓ Capecity Grep Cycle 5 2.018Ah 02:07-13.377 635.060nAh 06:05:00 023 2.018Ah 05:02:19.027		01 d.07	01 4109	01 d 10		
Current U Batter Step 1 2 3	o1 d.01 nit: AMP ry Cycle Operation Charge Rest Discharge	C-Rote Cycle 1 1.455/h 01-33:24.521 7580.000m/h 00-05:00.012 2.025/h 00:03:40.443 113.961µ/h	Cycle Line Cycle 2 2.026Ah 02:07:38.973 585.000nAh 00:00:500.000 2.025Ah 05:03:48.340 114.243.µdh	Current Graph Cycle 3 2.027Ab 02:06:59.617 695.000nMt 00:05:00.010 00:05:00.310.930 113.843uAh	Voltage Grap Cycle 4 2.022Ah 02:07:03.805 \$14.060Ah 00:05:20.801 2.019Ah 05:02:23.810 113.524uAh	Cycle 5 2.018Ah 02:07:13.327 635.000nAh 00:05:00.023 2.018Ah 05:02:49.027 113.852UAh		01 d.07	01 d.09	01 d 10		
Current U Batter Step 1 2 3	o1 d.01 nit: AMP ry Cycle Operation Charge Rest Discharge	C-Rote Cycle 1 1.455/h 01-33:24.521 7580.000m/h 00-05:00.012 2.025/h 00:03:40.443 113.961µ/h	Cycle Line Cycle 2 2.026Ah 02:07:38.973 585.000nAh 00:00:500.000 2.025Ah 05:03:48.340 114.243.µdh	Current Graph Cycle 3 2.027Ab 02:06:59.617 695.000nMt 00:05:00.010 00:05:00.310.930 113.843uAh	Voltage Grap Cycle 4 2.022Ah 02:07:03.805 \$14.060Ah 00:05:20.801 2.019Ah 05:02:23.810 113.524uAh	Cycle 5 2.018Ah 02:07:13.327 635.000nAh 00:05:00.023 2.018Ah 05:02:49.027 113.852UAh		01 d.07	01 4.09	01 d. 10		

Figure 7. BV9210B Cycle testing an 18650 battery.

Settings			Voltage and Current	
Select Output: Operation Mode: Function:	1: N7951A • Discharge/Charge •	Charged Capacity 11.6797 Ah	1(A) 1(A) 1(A) 1(A) 1(A) 1(A) 1(A) 1(A)	Vt (V 3.86 3.80 3.72 3.00
Res	it Settings	v t 3.8000 v	16.00 6.07 3.33 1000 -0.000	3.5 3.5 3.4 3.3
 Settings Charging Mode: Current: 	💿 cc 🌑 cv 20 A	I 1.0164 A Charged Capacity		8:47 54:13
Max Battery Voltage:	3.8 V	Cepacity (Ah) 4 11.69018		
Cut-off Condition Condition Type:	🖲 Current 💭 Voltage	11.67970 11.67922 11.67873		
Stopping Current: Instrument Settings		11.67825 11.67777 11.67728		
	3.99 V	11.67680	54:06.013 54:07.013 54:08.013 54:09.013 54:10.013 54:11.013	
Datalog Settings			Time to the total time	

Figure 8. BV9210B Performing a battery charging on an iron phosphate battery

•	Battery Emulator 🔠 Battery Viewer		
5	< Settings		Voltage and Current (Integration Period: 0.99962886)
Instrument Connection	Select Output: 1: N6781A •	Depleted Capacity	
Conn	Operation Mode: Discharge/Charge -	4.4812 Ah	-0.90 1.42
ectior	Function: 🚺 Discharge 🔹		
-		Vt	-0.95 1.21
Inst	Reset Settings	1.0002 v	0.97 0.98 1.14 1.07
Instrument Control			
nt Co	Discharge Settings Discharge Mode:	I	-1.02 0 s 26:53 53:46 01:47:32 02:41:19 03:35:05 04:28:52 Time
ntrol	Current Power Resistance	-1.0000 A	Current Linit: 💿 ANP 🔿 C-Rate 🔽 Current Graph 🗹 Voltage Graph 🧯 🕀 🔍 🤀 🎦 🚺 📰
	Constant Current: 1A		
	Dynamic CD ARB Waveform •	Capadity (Ah) 5.23e+00	
		5.23e+00 4.48e+00	
		2.99e+00 2.24c+00	
	Max Dattery Voltage: 1.45 V	1.49e+00	
	Cut-off Condition		
	Cut-off Voltage: 1 V	3.0e-04 -7.5e-01 0 s 20:53 53:46 01	20:39 01:47:32 02:14:26 02:41:19 03:08:12 03:35:05 04:01:58 04:28:52
AB	Cut-on vorage: 1 V	765 0 s 26:53 53:46 01	Time
в			🗆 🔤 🔍 🔍 🖓 🕁 🚺 📰
D	A Run Status: A- N6705C Stopped B- N	No Instrument C- No Instrument D- No Ins	trument
C	Start 🕟 Start Al		ncced Battery Test and Emulation 🔅 🖬 🗁 🚱 Export

Figure 9. BV9210B enables you to choose various discharge mode options (constant current, power, resistance, and dynamic current discharge)

Importing battery model characteristics

The BV9210B software provides an effortless way to import battery models created outside the BV9210B test environment. You can import a CSV file consisting of the following battery parameters: state of charge, open circuit voltage, and series resistance parameters

State of Charge(%)	Open Circuit Voltage(V)	Internal Resistance(ohm)
100.00	9.609423	7.544065
99.50	8.828673	3.889564
99.00	8.645126	3.791465
98.50	8.516480	3.767940
98.00	8.411436	3.780916
97.50	8.320710	3.804418
97.00	8.240466	3.840828
96.50	8.167970	3.886445
96.00	8.102751	3.927822
95.50	8.043658	3.971063
95.00	7.990255	4.014665
94.50	7.942882	4.057762
94.00	7.899871	4.098643

Figure 10. BV9210B Importing a CSV file battery model

Free Trial and Licensing

The BV9210B software is available for download with a 7-day free trial. Connect to your instrument for free with the built-in 7-day trial license. After the seven-day trial period, an extension trial is available for an additional 30 days once you enter your credentials. To purchase a license, choose the BV9211B single power supply option or the BV9210B multiple power supply option. The purchased license resides on the PC or network, depending on the license type.

Download the software at: www.keysight.com/find/BV9210

Two-Quadrant Architecture

Power supply function

The power supply function has a power output of up to 200 W, a current output of 20 A, and a voltage output of 30 V. It also has autoranging technology, which provides the highest current available at all output voltages, allowing you to meet the needs of various bench applications.

It has never been easier to create data logs for measurements taken over a specific period. The power supply has a large color display, data logging capabilities, and onboard memory. You can now log voltage and current measurements at the same time, separated by a programmable sample period, and save or export the graph in PNG/BMP format. You can even export the log file as time-stamped data in a .CSV format for reports and documentation.

Using the LIST mode, you can easily simulate common power problems or normal operation by performing complex sequences of output changes with fast and precise timing that are synchronized with internal or external signals.

The variable voltage slew rate allows for easy control of the rate at which the output slews from one voltage to another. All of this is accessible and programmable via the front panel of your power supply or computer for maximum productivity and efficiency.

Electronic load function

With a power of up to 250 W, the electronic load function provides superior performance. It can sink up to 40 A of current while supporting voltages of up to 60 V.

The electronic load function, like the power supply function, allows you to continuously log voltage and current to a data file. You can either save the data file internally or export it as a CSV file to a USB drive.

A dynamic load profile can be used to test the transient response of your power source. Like an oscilloscope, the built-in scope digitizes voltage and current and displays the results on the large built-in display. External current shunts or current probes are no longer required thanks to the built-in scope function. This feature significantly reduces measurement setup complexity while still providing accurate and fully specified measurements.

Intuitive and easy-to-use front panel interface and flexible IO connectivity

The 4.3-inch LCD color display shows the voltage and current of all channels in different view modes. The knobs, user-interface windows, and binding posts are color-coded to keep the setup straightforward and help you to avoid setup and connection errors. It also has two rotary encoder knobs for voltage and current for precise adjustment, plus an instrument keypad that allows quick adjustments and configuration in less time. The E36731A has rear output terminals for easy wiring, which is ideal for both bench and system setup.

The E36731A ships standard with LAN and USB. GPIB is available as an option.

Figure 11. The front and rear view of the E36731A

Specification

Accuracy (at 23 °C ± 5 °C)		E36731A
	DC Power Su	pply Output rating
Voltage		0 to 30 V
Current		0 to 20 A
Power		200 W
Programming Accuracy		
Voltage		0.025% + 1.5 mV
Current		0.035% + 1.5 mA
Readback Accuracy		
Voltage		0.025% + 1.5 mV
	Low, 0.1 A	0.035% + 10 μA
Current	Mid, 2 A	0.03% + 300 µA
	High, 20 A	0.05% + 250 μA
Load and Line Regulation, Voltage		0.01% + 2 mV
Load and Line Regulation, Curren		0.01% + 250 μA
Ripple and noise, Vpp (20 Hz to 2	,	< 7 mVpp
Ripple and noise, Vrms (20 Hz to		< 600 µVrms
	e to recover within the settling band follo	wing a load change from 50% to 100%; and from 100% to 50% of full load
Voltage settling band		15 mV
Time		< 50 µs
	Electronic L	oad Input rating
Voltage		0 to 60 V
Current		0 to 40 A
Power		250 W
Programming Accuracy		
Constant summation of	Low, 4 A	0.05% + 820 μA
Constant current mode	High, 40 A	0.05% + 7.2 mA
	Low, 15 V	0.03% + 4.2 mV
Constant voltage mode	High, 60 V	0.03% + 15 mV
	Low, 0.08 Ω to 30 Ω	0.1% + 160 mS
Constant resistance mode1	Mid, 10 Ω to 1.25 kΩ	0.1% + 16 mS
	High, 100 Ω to 4 kΩ	0.1% + 1.8 mS
	Low, 0.02 W to 5 W	0.08% + 18 mW
Constant power mode	Mid, 0.15 W to 25 W	0.08% + 150 mW
Constant portor mouo	High, 1.5 W to 250 W	0.08% + 1.5 W
Readback Accuracy	1 ngn, 1.0 ¥¥ to 200 ¥¥	0.0070 • 1.0 •
NEAUDALK ALLUIDUY	Low 4.A	0.05% . 9200
Current	Low, 4 A	0.05% + 820 μA
	High, 40 A	0.05% + 7.2 mA
Voltage	Low, 15 V	0.03% + 4.2 mV
-	High, 60 V	0.03% + 15 mV
Power	Low, 0.02 W to 5 W	0.08% + 18 mW
	Mid, 0.15 W to 25 W	0.08% + 150 mW
	High, 1.5 W to 250 W	0.08% + 1.2 W

Typical characteristics

			E36731A		
	D	C Power Supply Characteristics			
Programming Resolution		Front Panel	Remote		
Voltage		1 mV	650µV		
Current		1 mA	450µA		
Readback Resolution		Front Panel	Remote		
Voltage		1 mV	500µV		
	Low, 0.1 A	1 µA	1 µA		
Current	Mid, 2 A	1 mA	100µA		
	High, 20 A	1 mA	300 µA		
Programmable output resista	ance				
Range		-50 m Ω to 1 k Ω			
Accuracy					
Programming temperature co	oefficient per °C (% of output -	⊦ offset)			
Voltage		0.01% + 0.6 mV			
Current		0.01% + 0.2 mA	0.01% + 0.2 mA		
Readback temperature coeffi	icient per °C (% of output + off	fset)			
Voltage		0.01% + 0.04 mV			
Current		0.01% + 0.2mA			
Ripple and noise, normal mode	e current (20 Hz to 20 MHz)	< 1 mArms			
Remote sense (maximum volta	age in load lead)	0.7 V	0.7 V		
Over voltage protection (OVP)	programming accuracy	0.2% + 0.4 V			
Over voltage protection (OVP)	activation time ²	< 5 ms			
Over current protection (OCP)	activation time ²	< 5 ms	< 5 ms		
Up/down programming settli	ng time to within 1% of the to	al excursion			
Up full load		50 ms			
Up no load		50 ms			
Down full load		30 ms			
Down no load		100 ms			
Command processing time		< 10 ms			

Typical characteristics (continued)

	Electronic Load Characteristics		
Typical Minimum Operating Voltage at Full-Scale	e Current and for Full Dynamic		
Current	Low, 4 A	0.15 V	
Guilent	High, 40 A	1.5 V	
Programming Resolution			
Constant current mode	Low, 4 A	45 µA	
Constant current mode	High, 40 A	450 µA	
Constant voltage mode	Low, 15 V	170 μV	
Constant voltage mode	High, 60 V	1.7 mV	
	Low, 0.08 Ω to 30 Ω	450 µS	
Constant resistance mode1	Mid, 10 Ω to 1.25 k Ω	450 µS	
	High, 100 Ω to 4 $k\Omega$	45 µS	
	Low, 0.02 W to 5 W	675 μW	
Constant power mode	Mid, 0.15 W to 25 W	6.75 mW	
	High, 1.5 W to 250 W	67.5 mW	
Readback Resolution			
Current	Low, 4 A	70 µA	
Current	High, 40 A	700 µA	
/oltana	Low, 15 V	270 µV	
Voltage	High, 60 V	2.7 mV	
Femperature Coefficients - Programming / Read	back		
	Low, 4 A	0.009%/°C + 16 µA/°C	
Constant current mode	High, 40 A	0.008%/°C + 200 μΑ/°C	
	Low, 15 V	0.006%/°C + 110 μV/°C	
Constant voltage mode	High, 60 V	0.006%/°C + 600 µV/°C	
	Low, 0.08 Ω to 30 Ω	0.01%/°C + 3 mS/°C	
Constant resistance mode1	Mid, 10 Ω to 1.25 k Ω	0.01%/°C + 250 µS/°C	
	High, 100 Ω to 4 k Ω	0.01%/°C + 25 µS/°C	
	Low, 0.02 W to 5 W	0.015%/°C + 1 mW/°C	
Constant power mode	Mid, 0.15 W to 25 W	0.015%/°C + 3 mW/°C	
	High, 1.5 W to 250 W	0.015%/°C + 30 mW/°C	
Ripple and noise, Vrms (20 Hz to 10 MHz)		<10mVrms	
Ripple and noise, normal mode current (20 Hz to 20	MHz)	<6mArms	
Measurement Small Signal Bandwidth (-3 dB typica	1)	30 kHz	
Measurement Small Signal Bandwidth (-1 dB typica	1)	17.5 kHz	

Typical characteristics (continued)

Programmable Short / Open		
Programmable short		37.5 mΩ (4 A / 40 A)
Input off impedance		824 kΩ
Electronic Load Characteristics		
Protection		
Fixed OCP	Low, 4 A	4.35 A ± 25 mA
	High, 40 A	42 A ± 250 mA
Programming OCP	Low, 4.08 A	0.2% + 50 mA
	High, 40.8 A	0.2% + 80 mA
OVP	Low, 15 V	16.5 V +/- 85 mV
UVF	High, 60 V	165 V +/- 600 mV
	Low, 0.02 W to 5 W	5.5 W
OPP	Mid, 0.15 W to 25 W	27.5 W
	High, 1.5 W to 250 W	275 W
Protection Activation Time		
INH input		< 5 µs
Fault on coupled output		< 10 µs
Minimum Programmable Operating Point		
Constant current mode	Low, 4 A	1 mA
	High, 40 A	10 mA
Constant voltage mode	Low, 15 V	5 mV
	High, 60 V	20 mV
	Low, 0.08 Ω to 30 Ω	0.08 Ω
Constant resistance mode1	Mid, 10 Ω to 1.25 k Ω	10 Ω
	High, 100 Ω to 4 $k\Omega$	100 Ω
	Low, 0.02 W to 5 W	0.02 W
Constant power mode	Mid, 0.15 W to 25 W	0.15 W
	High, 1.5 W to 250 W	1.5 W
Maximum Programmable Power Operating Po	pint	
	Low, 0.02 W to 5 W	5.1 W
Constant power mode	Mid, 0.15 W to 25 W	25.5 W
	High, 1.5 W to 250 W	255 W
Maximum Slew Rates (changes over time from	m 10% to 90% or 90% to 10%	
Constant surrant made	Low, 4 A	200 kA/s
Constant current mode	High, 40 A	3.7 MA/s
Constant veltare mode	Low, 15 V	79 kV/s
Constant voltage mode	High, 60 V	310 kV/s
Mainframe Oscilloscope Measurement Accur	acy	
	Low, 4 A	0.04% + 3 mA
Constant current mode	High, 40 A	0.04% + 10 mA
	Low, 15 V	0.02% + 15 mV
Constant voltage mode	High, 60 V	0.02% + 40 mV

Typical characteristics (continued)

Environmental Conditions	
Operating environment	Indoor use, installation category II (for AC input), pollution degree 2
Operating temperature range	0 °C to 40 °C
Storage temperature	–20 to 70 °C
Relative humidity	Operating Condition: Up to 80% RH at temperature up to 40 °C (non-condensing) Storage Condition: Up to 90% RH at temperature up to 60 °C (non-condensing)
Altitude	Up to 2000 meters
Electromagnetic compatibility	Compliant with EMC Directive (2014/30/EU) IEC 61326-1:2012/EN 61326-1:2013 Group 1 Class A Canada: ICES-001:2004 Australia/New Zealand: AS/NZS South Korea KC mark
Safety	UL 61010-1 3rd edition, CAN/CSA-C22.2 No. 61010-1-12, IEC 61010-1:2010 3rd edition
Acoustic noise declaration	Sound pressure Lp <65 dB(A) at operator position, Lp <70 dB(A) at bystander position Sound power, Lw <70 dB(A)
AC input	100 VAC to 240 VAC (±10%), 50/60Hz
Interface Capabilities	
GPIB	SCPI-1999, IEEE 488.2 compliant interface
LXI compliance	Class C
USB 2.0	Requires Keysight IO Library version 17.2.208 and up
10/100 LAN	Requires Keysight IO Library version 17.2.208 and up
Digital Control Characteristics	
Maximum voltage ratings	+16.5 VDC/ -5 VDC between pins (pin 4 internally connected to chassis ground)
Pins 1 and 2 as fault output	Maximum low-level output voltage = 0.5 V @ 4 mA Maximum low-level sink current = 4 mA Typical high-level leakage current = 1 mA @ 16.5 VDC
Pins 1 - 3 as digital/trigger outputs (pin 4 = common)	Maximum low-level sink current = 100 mA Typical high-level leakage current = 0.8 mA @ 16.5 VDC
Pins 1 - 3 as digital/trigger inputs and pin 3 as inhibit input (pin 4 = common)	Maximum low-level input voltage = 0.8 V Maximum high-level input voltage = 2 V Typical low-level leakage current = 2 mA @ 0 V (internal 2.2k pull-up) Typical high-level leakage current = 0.12 mA @ 16.5 VDC
Remote Sense Capabilities	
Inputs can maintain specifications with up to a 5-volt drop per load The load lead drop reduces the maximum available voltage at the	
Weight and Dimensions	
Model	E36731A
Weight, kg	8.3
Overall dimension, mm (H x W x D)	144.85 x 215.90 x 489.06
Net dimension (without feet, strap handle and GPIB module), mm (H x W x D)	132.51 x 212.80 x 408.24

Definitions

Specification (spec)

The specification refers to the warranted performance of a calibrated instrument stored for a minimum of two hours within the operating temperature range of 0 to 55 °C and after a one-hour warm-up period. Measurement and calibration uncertainties comply with ISO-17025 methods. Data published in this document are specifications as indicated.

Typical (typ)

The characteristic performance that 80% or more manufactured instruments will meet. The warranty for this is not available and does not include measurement or calibration uncertainty and is valid only at approximately 23 °C (room temperature).

Nominal (nom)

Nominal represents the mean or average characteristic performance, or the value of an attribute determined by design, such as a connector type, physical dimension, or operating speed. The warranty for this data is unavailable, and the measurement is at approximately 23 °C (room temperature).

Measured (meas)

Measured is an attribute taken during product development to communicate expected performance. The warranty for this data is unavailable, and the measurement is at approximately 23 °C (room temperature).

Ordering Information

Kesight E36731A

Model	Description
E36731A	Battery Emulator
BV9210B	PathWave BenchVue Advanced Battery Test And Emulation Software for Four Instrument
BV9211B	PathWave BenchVue Advanced Battery Test And Emulation Software for a Single Instrument

How to order a license

Step 1	Step 2	Step 3
Determine the software model	Choose license term	Select license type
 Choose the right software model to automate all the connected power supplies. BV9211B: Allows only one instrument connection at a time. BV9210B: Allows up to four instrument connections at a time. 	Subscription	 Node-locked Transportable USB portable Floating – single site

Step 4 Select Duration	Step 5 Select USB	Step 6 Select Delivery method
6 months	Only for "USB portable"	Paper certificate
12 months		 eMail and paper certificate
24 months		eMail certificate
36 months		

Standard shipped accessories

Description

AC power cord (based on destination country)		
Certificate of calibration		
One detachable front output connector		
One rear output connector		
One rear remote sense connector		
One digital IO connector		

Options

Model	Description
SEC	NISPOM and file security
UK6	Commercial calibration with test result data

Keysight GPIB module and rackmount kits

Model	Description
EL34GPBU	GPIB user-installable interface module
1CM104A	Rack mount flange kit with two flange brackets
1CM105A	Rack mount flange kit without handles and two flange brackets
1CM116A	Rack mount flange kit with one flange bracket, one half-module bracket
1CN107A	Handle kit with two front handles
1CP108A	Rack mount flange and handle kit with two brackets and front handles

This information is subject to change without notice. @ Keysight Technologies, 2023, Published in USA, March 13, 2023, 3123-1042.EN